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1.0 Introduction and Overview 
 
This report provides a critical review and rebuttal to the opinions of Dr. Roger L. Olsen of CDM 
Companies, Inc. (Olsen, 2008a), as well as a reanalysis of the data upon which his opinions are 
based.  The issue in dispute is the degree to which a series of principal components analysis 
(PCA) runs conducted by Olsen, support his conclusions with regard to sources of phosphorus, 
bacteria and other constituents in the Illinois River Watershed in Northwest Arkansas and 
Eastern Oklahoma.  A map of the study area is shown as Figure 1-1. 
 

 
Figure 1-1.  Site map showing rivers, creeks, lakes and cities/towns. 
Gray shaded areas indicate regions of human population density > 400 people/mi2, based on ESRI (2006) data.   
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Olsen’s primary opinion based on his PCA, is summarized at the beginning of his report, in the 
following quote: 

“Principal components analysis (PCA) identified two major sources of contamination in 
the IRW: poultry waste disposal and WWTP discharges.  Poultry waste is by far the 
dominant contamination source in the IRW when compared to other sources.  Cattle 
waste contamination was unique from both poultry waste and WWTP effluent, and was 
identified in some samples with documented cattle manure contamination.  However, 
chemical contamination from cattle waste is not dominant in the basin and only 
represents a minor source.  In the PCA, the chemical and bacterial composition of 
poultry waste creates a distinct chemical signature that contains both phosphorous and 
bacteria.”1 

Olsen supports his application of PCA to IRW data sets by citing a number of papers in the 
literature where PCA and related methods were applied to environmental chemical data.  There 
are indeed, many PCA applications in the literature.  I have published such papers myself.2 Olsen 
has not.3  I have also served as a peer-reviewer for PCA case-study papers submitted to a number 
of journals.4  There are numerous pitfalls for the unwary and/or inexperienced PCA practitioner.  
The mere existence of the literature cited by Olsen does not validate his work, nor does it give 
him license to err in PCA implementation, to misinterpret the results or to conceal lines of 
evidence that contradict his opinion.  In this report, I will show that Olsen did all of this, and that 
his PCA does not identify sources of contamination in the IRW.   Rather, it reflects the degree to 
which a small handful of chemicals exhibit a preference to be in solution, or to be associated 
with the particles in the suspended solids phase.   

 
1.1 Qualifications 
The conclusions and opinions in this report are based on my professional experience and 
education, and my opinions are supported to a reasonable degree of scientific certainty.  My 
expertise is in the area of environmental forensics, with a particular focus on the application of 
multivariate statistical methods (including PCA) to environmental geochemical data.  I received 
my M.S. in Geology at the University of Delaware in 1988 and my thesis focused on multivariate 
statistical analysis applied to geological data. I spent seven years in environmental consulting 
with Roux Associates, Inc. (West Deptford, New Jersey) and McLaren/Hart Environmental 
Engineering, Corp (Philadelphia, PA).  During that time, I worked on a number of environmental 
contamination projects under a variety of regulatory authorities, including CERCLA, RCRA and 
a number of State regulatory authorities.  I received my Ph.D. in Geological Sciences from the 
University of South Carolina in 1997, and my dissertation concerned development and 
application of a PCA based receptor modeling method to environmental geochemical data.    
Since 1995, I have been a research faculty member at the Energy & Geoscience Institute (EGI), 
Department of Civil and Environmental Engineering at the University of Utah.  My current 
position is Research Associate Professor.  My research at EGI focuses on development and 
deployment of multivariate statistical methods in geology, environmental chemistry, and 
environmental forensics.  My environmental forensics work has focused on sources, fate and 

                                                 
1 Olsen (2008a). p. 1-2.  Bullet 3. 
2 Johnson, et al., 2007; Magar, et al., 2005; DeCaprio, et al., 2005; Johnson and Ehrlich, 2002; Johnson, 2002; Johnson, et al., 

2000;  Jarman, et al., 1997; Dore, et al., 1996; Ehrlich, et al., 1994. 
3 See Olsen 9/11/08 Deposition. p. 306. Lines 2-8. 
4 See Johnson CV: Appendix B, p. 14. 
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alteration of contaminants in soil, sediment, water and biota.  I am the President and Chief 
Scientist of GeoChem Metrix, Inc. in Sandy, Utah - a service firm that specializes in analysis of 
chemical data and environmental forensics, and it is under that affiliation that this work has been 
performed.   
 
I have spent a good portion of my career focusing on the development and deployment of PCA-
based methods in environmental geochemistry and environmental forensics.  I have published 
methodological papers/tutorials on the subject, as well as case-study/application papers.  I have 
taught short courses on multivariate methods (including PCA) for the International Society of 
Environmental Forensics, the Association of Environmental Health and Soils, and the Society of 
Environmental Toxicologists and Chemists.   

My curriculum vita is included as Appendix B of this report. My CV includes all of my 
publications as well as a summary of testimony provided in other cases.  My billing rate for work 
conducted in this matter is $175/hour for data analysis and report preparation, and $225/hour for 
deposition and trial testimony 
 
1.2 Data and Information Considered 
The focus of my work on this project has been to review and critique the multivariate data 
analyses presented by Roger Olsen in his May 14, 2008 report (Olsen, 2008a).  Thus, a primary 
objective of my work was to first understand exactly what data sets were used and considered by 
Olsen.  I identified the following data sets produced by Olsen and/or his CDM colleagues, as 
summarized below.   

The data considered in Olsen’s PCA runs are contained within a Microsoft Access database 
entitled IllinoisMaster.mdb.5  For use in his PCA, two primary subsets of the database were 
extracted and saved in the Excel files named: (1) PCA_Main_Database_Water.xls; and (2) 
PCA_Main_Database_Solids.xls.6  These files contain approximately 50 data fields.  Individual 
Excel subdatabase spreadsheets were then extracted from these files for use in PCA.7  These files 
contained data for nine variables.8  The PCA reproductions presented in this report start with 
these subdatabase files.  Cowan (2008) addresses the degree to which these files can be recreated 
from the original Microsoft Access database. 

Using these files as his source data, Olsen performed PCA on a number of permutations of the 
water data that are presented in his report (22 PCA runs – numbered SW1 through SW22) and 
solids data (8 PCA runs – numbered SD1 through SD8).9  These individual PCA runs differed by 
(1) whether solids or water samples were considered; (2) which groups of samples were included 
in the analyses (i.e. USGS base flow samples, Lake Tenkiller samples, etc.); (3) which analytes 
(chemical parameters and bacteria) were included in the analyses; and (4) the criteria used for 
inclusion of samples with missing data.   

The numbers of samples and analytes in each PCA run are summarized in Olsen’s Table 6.11-7a 
and 6.11-7b. Individual input matrices and results for each PCA run were provided by Olsen in 

                                                 
5 Olsen (2008a). pp. 4-1 to 4-2. 
6 Olsen (2008a). p. 6-35.  
7 Olsen (2008a). p. 6-39. 
8 Subdatabase files contained data for the following nine fields: EDA_Group; EDA_Sample; EDA_Location; EDA_Variable; 

EDA_Value; EDA_ValOp; EDA_UnitsID; EDA_Y; and EDA_X.  Olsen (2008a) pp. 6-36 to 6-37. 
9 In addition, there PCAs run in preparation for the February Preliminary Injunction (PI) hearing, and “preliminary” PCAs run 

after the PI, that were not includes in Olsen’s report.  See Olsen deposition testimony  September 10 and 11, 2008. P. 371-376. 
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the form of spreadsheets with filenames keyed to the PCA run numbers.  For example, for 
Olsen’s primary water PCA run SW3 (573 surface water samples, 26 analytes) the input data 
matrix was included in Olsen’s document production as the file 
‘Crosstab_Water_0427_SW_3.xls’.  The results (scores, loadings, PC coefficients, eigenvalues, 
percent variance explained, and rotations) were included in the produced file 
‘Results_Water_0427_SW_3.xls’.   

The results files contain the digital data used for Olsen’s PCA related graphics.  These files were 
useful in evaluating Olsen’s PCA, because it allowed plotting of data in alternative ways to that 
presented by Olsen.  For example, Olsen claims to have done a spatial analysis whereby he 
evaluated the efficacy of his poultry fingerprint criterion by comparison to purported ground-
truth data, such as poultry house density data.10 This was based on his opinion that poultry house 
density is a surrogate for poultry waste land applications.11  Elsewhere in his report, Olsen 
presents a map of poultry house density data, but curiously, he never shows PCA results plotted 
over that basemap.  As Olsen’s poultry house data was produced as GIS shapefiles, it was 
relatively easy to re-plot Olsen’s PCA results on his poultry-house density basemap.   

The data described above were produced by Olsen in Excel, SYSTAT and Microsoft Access, and 
GIS (shapefile) formats.  In addition I have reviewed Olsen’s correspondence and data provided 
in his considered materials, two errata submitted by Olsen (dated July 25, 2008 and September 
24, 2008), his testimony in connection with the Preliminary Injunction (“PI” - February 2, 2008 
deposition testimony; February 21-22 hearing testimony), and his September 2008 deposition 
testimony.   I have also considered scientific literature that I have acquired in my experience, and 
I visited the Illinois River watershed on July 16, 2008.  
 
1.3   Opinions 
My primary opinions are summarized below.  The bases of these opinions are expanded upon 
throughout the remainder of the main body of this report and Appendix A. 

• Fallacy of the “Unique Poultry Waste Signature.”  Olsen’s PCA cannot differentiate 
between poultry and other sources in the IRW.  Olsen’s sampling included collection of a 
few samples designed to characterize sources other than poultry (e.g. cattle and waste-
water treatment plants), but his PCA cannot distinguish between these source categories. 
In addition, there are multiple other sources not considered by Olsen at all (spray 
irrigation, sludge application, biosolids application, nursery runoff, golf courses, wildlife, 
swine lagoons, septic systems, runoff from dirt roads, and commercial fertilizer 
application).12 

• Errors in Assumptions of the PCA Method. Olsen made fundamental errors related to 
basic assumptions of the PCA method.  The most consequential of these were (1) his 
assumption that unique source signatures will be conserved in the environment; and (2) 
the assumption that a principal component equals a source-related fingerprint.13  These 
assumptions are addressed in more detail in Appendix A.  

• Errors of PCA Implementation. Olsen made a number of errors in implementation of 
PCA: (1) he ignored results of goodness-of-fit diagnostics that suggested that he should 
retain more than 2 principal components; (2) the data transformations used were not 

                                                 
10 See Olsen (2008a).  pp. 6-34. Steps 12 and 13. 
11 Olsen (2008a).  p. 6-30. 4th paragraph. 
12 Olsen Deposition. 9/11/08. pp.  521-534. 
13 Olsen (2008a). p. 6-59. Summary Observations. 1st sentence. 
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appropriate for this type of analysis; (3) rather than use PC scores calculated and reported 
by SYSTAT, Olsen chose to calculate PC scores himself, and in the process he did the 
calculations incorrectly; and (4) he did not evaluate goodness-of-fit on a variable-by-
variable basis, so he is apparently unaware that several parameters that he considers 
diagnostic of his “unique poultry waste signature” (bacteria, arsenic, copper, zinc) exhibit 
a poor fit in his model.  These mathematical/methodological problems are addressed in 
more detail in Appendix A.   

• Data Quality Problems.  There are problems with the quality of this data set, such that it 
is doubtful that a correctly implemented PCA would have yielded results that would 
allow differentiation of source fingerprints. Problems include the potential bias 
introduced by multiple labs using multiple analytical methods, a high incidence of 
missing data (especially for bacteria), missing data substitution strategies, and sample 
representativeness problems.  The basis of this opinion is addressed primarily within 
Appendix A of this report, and is also addressed by Cowan (2008). 

• Major Contradictions to Olsen’s Interpretations and Opinions. Even if we ignore the 
problems of data quality, assumptions, and implementation, and accept Olsen’s PCA 
results at face value, a detailed review of Olsen’s interpretations reveals major 
contradictions.  Olsen was aware of many of these, but presented only examples that 
supported his opinion.  In one instance, Olsen changed the representation of results on a 
map, such that his PCA results appear to support his interpretation.  In so doing, he never 
disclosed that subjective decision to the reader.  

• Failure to Recognize Influence of Total Concentration and Geochemical 
Partitioning on the PCA.  By assuming from the outset that source signatures control 
this data set, Olsen completely missed the two primary controls on the surface water and 
groundwater data sets: (1) total concentration; and (2) how chemicals redistribute in the 
environment according to their affinity for the dissolved phase versus association with 
suspended particulate matter.  Olsen’s PCA cannot be used to infer any source of 
contamination to the IRW, let alone poultry.    
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2.0 PCA Summary and Its Application by Olsen 
 
2.1  Principal Components Analysis (PCA) Overview 
Olsen conducted a series of principal components analyses (PCA) of water and solids data.  The 
objective of PCA is to reduce the dimensionality of a data set in which there are a large number 
of interrelated (i.e., correlated) variables, such that similarities and differences between samples 
may be viewed on a single plot, with minimal loss of information.  This dimensionality reduction 
is achieved by transforming the data to a new set of uncorrelated (i.e. mutually orthogonal) 
reference variables, which are termed principal components (PCs). The PCs are sorted such that 
each in turn, accounts for a progressively smaller percentage of variance. If the significant 
sources of variability can be accounted for by a small number of PCs, then relationships between 
multivariate samples may be assessed by simple inspection of a 2 or 3-dimensional plot, referred 
to as a principal components scores plot (PC scores plot).  An example scores plot is shown 
below (Figure 2-1).   

 
Figure 2-1.  Olsen’s scores plot for PCA run SW3 (full range view). 
This figure is a direct copy of Olsen Figure 6.11-18a.   

Figure 2-1 is a direct copy of Olsen’s Figure 6.11-18a, and is a scores plot from Olsen’s primary 
PCA run: SW3.  Each of the black dots on this plot represents one of the 573 samples in SW3.  
The main thing to keep in mind in viewing such a plot is that samples that plot close to each 
other have similar chemical compositions.  Samples that plot a great distance from each other 
have different chemical compositions. 
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2.2 Olsen’s PCA Methodology 
The term “PCA” is not a definitive statement of one’s methodology.  There are numerous data 
pretreatment methods, transformations, goodness-of-fit diagnostics, and other data analysis 
options that can be done under the umbrella term “PCA.”  Therefore, merely saying that one has 
performed a PCA is insufficient to understand exactly what calculations might have been done.  
As such, Olsen’s actual PCA methods are provided in Appendix A. This includes a detailed 
discussion of the mathematics of PCA, a discussion of the difference between PCA and factor 
analysis14 and a presentation of the calculations actually employed by Olsen.  For a more detailed 
discussion of the general methodology of PCA and related methods, the reader is referred to a 
book chapter I wrote on the subject.15 

Olsen performed his PCA using three software tools: Microsoft Excel, SYSTAT and 
EDAnalyzer.  Excel was used to perform transformations, prepare the data for the actual PCA 
calculation, and calculation of scores on the back-end of the PCA.  The PCA itself was done 
using the commercial statistical software package: SYSTAT (specifically SYSTAT’s Factor 
Analysis module).  In addition, Olsen used an in-house, proprietary software program 
(‘EDAnalyzer’) which is an Excel Add-In that reportedly serves as an interface to control 
graphical output and the various inputs/outputs between Excel and SYSTAT.  EDAnalyzer was 
developed by CDM, and was used to do exploratory analysis, set up instructions for Excel, and 
set desired parameters for subsequent PCA of the data.16  

2.2.1 Results Presented by Olsen 
PCA results were provided in the form of data files as described in Section 1.2.  Olsen presented 
these results graphically in a number of formats as follows:  

• Scree Plots. These plots show the percentage of variance (a function of eigenvalues) 
associated with each principal component.  The percent variance is plotted as a ski-slope 
shaped curve/line graph (e.g. Olsen Figures 6.11-1, 6.11-3, 6.11-5, 6.11-7 and 6.11-9).  
Data for these graphs are included in results spreadsheets under the row heading “Percent 
of Total Variance Explained.”  

• Percent Variance Bar Graphs. These bar graphs show the same information as a scree 
plot, but the data is plotted alternatively as a bar graph, rather than a line graph (e.g. 
Olsen Figures 6.11-2, 6.11-4, 6.11-6 and 6.11-8).   

• Loadings Bar Graphs.  These plots graphically illustrate the principal components 
loadings, which are correlation coefficients of the principal components with respect to 
individual chemicals included in the analysis (Olsen Figures 6.11-10, 6.11-12, 6.11-14a, 
6.11-14b, 6.11-16, 6.11-18).   

• PC Coefficients Bar Graphs.  Principal component coefficients are equal to the loadings 
divided by the corresponding eigenvalues.  Visually they should look identical to the 
loadings bar graphs, the only difference being that scaling by eigenvalues changes the 
scale of the y-axis. 

• Scores Plots.  Scores values are included in each results spreadsheet, and were used to 
plot principal components scores plots (Olsen Figures 6.11-18a-e, 6.11-19a-d, 6.11-20a-f, 
6.11-21a-d, 6.11-22a-d, and 6.11-25).  One of Olsen’s scores plots (from his PCA run 
SW3) is presented above as Figure 2-1.   

                                                 
14 Olsen maintains that he is doing principal components analysis, not factor analysis.  The distinction between these (and which 

one Olsen used) was a point of contention during the PI process.   As such, Appendix A addresses the distinction between the 
two, as well as discussion of the reasons for the stigma associated with ‘factor analysis.’   

15 Johnson, et al. (2007). 
16 Olsen (2008a)  p. 6-36; p. 6-40. Deposition Testimony (9/11/08).  p. 308-313.   
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• Scores Maps.  One of Olsen’s most consequential interpretations is that principal 
component 1 (PC1) is equivalent to “poultry waste.”17  This is an entirely subjective and 
unsupportable conclusion that will be addressed in detail elsewhere in his report.  Be that 
as it may, given that interpretation, Olsen established a criterion whereby samples with 
PC1 > 1.3 were considered to be ‘poultry waste impacted’ and he presented maps 
whereby samples above this threshold are shown as red-shaded circles.  Samples with 
PC1 scores < 1.3 are shaded green.  These maps are referred to within my report as 
Olsen’s “red-dot / green-dot maps.” 

In addition to the graphics summarized above, the results of Olsen’s PCA runs (scores, loadings, 
PC coefficients, eigenvalues, percent variance explained, and rotations) were provided digitally 
in a series of Excel files, the names of which are keyed to the PCA run number (e.g. SW3 results 
are in file ‘Results_Water_0427_SW_3.xls’.  The results files contain the digital data used for 
most of the PCA related graphics listed above.  The PC scores for each of Olsen’s four major 
PCA runs were also included in Appendix F of his report.     

2.2.2  Methodological Problems  
On pages 6-32 through 6-66 of his report, Olsen describes his PCA methods (data management 
practices, preparation steps, data preprocessing options, calculations, back-calculations, and 
interpretations).  To check these described methods I attempted to reproduce Olsen’s primary 
PCA run (SW3) using the normalizations and transformations that he indicated. The method 
descriptions in Olsen’s report were ultimately insufficient to reproduce his analyses.  I was able 
to fill in these gaps by trial and error, by matching matrices to the results reported in Olsen’s 
production material.  To the extent that I found errors or gaps in his method descriptions, I have 
clarified what Olsen actually did in Appendix A.  In so doing, I identified a number of key errors 
and concerns with respect to Olsen’s assumptions, the quality of his data, his PCA 
implementation, and its general application to this environmental chemical data set.  These 
problems are summarized below, and are outlined in detail in Appendix A.    

2.2.2.1  Faulty Assumptions 
Olsen’s PCA carries with it, two basic assumptions that are fundamentally wrong.  

• Reification of Factors.  Reification is a term that refers to the assumption that principal 
components or factors are “things” that can be equated with physical or chemical 
phenomena. They are not.  Rather, principal components are abstract sets of coordinates 
that allow us to plot data on simple two or three dimensional graphs.  But Olsen 
consistently interprets PC1 as “poultry waste” and PC2 as “waste water treatment plant 
effluent.”18  Reification of principal components and factors has been criticized in the 
literature for more than 25 years.  (See Appendix A: Sections A1.2, A1.3; A1.4.2, A2.5, 
A2.5.1).   

• A priori Assumption of a Source-Driven System.  PCA and related methods have been 
successfully used in the literature to identify chemical patterns related to source.  But 
source patterns do not always drive a PCA.  What does drive is systematic variability, 
regardless of where it comes from.  PCA can just as easily reflect alteration processes or 
even systematic error or bias.  It depends on the data set being studied.  But Olsen never 
discusses or explores his PCA interpretation in any context other than sources.  Therefore, 
his interpretation carries the implicit assumption that differences in chemical patterns in 

                                                 
17 Olsen (2008a). p. 6-60.  Also see Figure 6.11-18c. 
18 Olsen (2008a). p. 6-59. Summary Observations. 1st sentence. 
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the IRW are due to differences in sources, and only sources.  But Olsen has acknowledged 
that some chemicals used in his PCA (e.g. sodium) are preferentially found in the 
dissolved fraction of water19 and that others (e.g. iron and aluminum) are preferentially 
associated with suspended sediment in water.20  When Olsen’s PCA is evaluated in 
context of preferential affinity of these analytes, his so called “poultry signature” is 
actually related to nothing more than suspended particulate matter in a sample.  This issue 
is explored further in Section 4.2.   

 
2.2.2.2  Data Concerns 
There are numerous problems with the data set analyzed by Olsen using PCA, such that it is 
doubtful that a correctly implemented PCA would yield results that would allow inference of 
source fingerprints with any degree of confidence.  These issues are summarized below, and are 
discussed in detail in Appendix A (Section A2.1).  These issues are also addressed in the expert 
report of Cowan (2008). 

• High Incidence of Missing Data. CDM and Lithochimea collected 2,325 individual water 
samples that were originally considered for use in Olsen’s primary PCA run (SW3: see 
Table 2-1).  Only 267 samples (11.5%) had full data records for all 26 variables used in 
Olsen’s PCA run SW3.   Olsen got the number of samples in SW3 up to 573 by allowing 
samples with up to 6 missing data points in the analysis. Of the 26 variables in SW3, 
bacteria (total coliforms, E. coli, enterococcus, fecal coliform) were the most problematic 
in terms of missing data.  The percentage of missing data for bacteria variables ranged 
from 28 to 41 percent of the samples (see Appendix A, Section A2.1 and Table 2-1).    

• Missing Data Substitution. In order to be able to use samples with up to 6 missing data 
points, Olsen had to come up with a missing data substitution scheme.  The scheme 
employed was substitution of the mean (average) for all samples in the data set where that 
variable was not missing.  This presents a series problems that discussed in more detail in 
Appendix A (Section A2.1).    

• Multiple Analytical Methods.  Phosphorus (P) is one of the primary chemicals of concern 
in the IRW study.  However, the P data in Olsen’s data base were run by different labs and 
by different methods.   To the extent that there is a potential bias between these methods 
(and Olsen acknowledges that there is) this could contribute systematic variability to a 
PCA (Appendix A: Section A2.1).  

• General Data Management Issues. From a database management standpoint, there are 
problems with the reproducibility of the data going from the Access database into the 
PCA, as outlined by Cowan (2008).     

2.2.2.3  Errors in Calculation and Implementation 
Olsen demonstrates a lacks of understanding and/or experience in implementation of PCA.  
Major mistakes in implementation include:  

• Errors in Calculation of Principal Component Scores.  While Olsen’s software package 
SYSTAT reports PCA scores, Olsen did not use them.  Instead he calculated them himself 
in Excel.  In so doing he failed to correctly back-calculate his data (see Appendix A: 
Section A2.3). 

• Failure to use more sophisticated PCA goodness-of-fit diagnostics. Olsen relied primarily 
on the percent variance criterion for determining the number of significant principal 

                                                 
19 Olsen (2008a). p. 3-18. 4th paragraph.  Olsen Deposition. 9/10/08. p. 116-117. 
20 Olsen Deposition. 9/10/08. p. 77. 
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components, and as a result his analysis focuses primarily on 2 PC models.  In Appendix 
A, using a graphical variable-by-variable goodness of fit diagnostic method, I show that    
Olsen’s 2 principal component model for surface water exhibits a very poor fit for several 
variables that he claims are important constituents of his “unique poultry waste signature” 
(arsenic, copper, zinc,  total coliforms, E. coli, enterococcus, fecal coliforms). Olsen was 
aware of this method, but opted not to use it. Olsen was also aware of SYSTAT results 
indicating up to 5 principal components, but he ignored that information.  (Appendix A: 
Section A2-4). 

2.2.2.4 Errors in Interpretation 
Olsen’s PCA interpretations are not consistent with the purported independent ground-truth 
information (poultry-house density data) presented in his report.  As a result, what Olsen calls a 
‘unique poultry-specific biological and chemical signature’ is neither unique nor poultry-
specific.   Olsen either failed to recognize or failed to disclose information that contradicted his 
opinion.   These issues are discussed in more detail in the summaries of Olsen’s major PCA runs 
(Section 2.3) and in discussion of the major contradictions in Olsen’s theory (Section 3.0).   

2.2.2.5 Failure to Adequately Characterize Other Sources 
In Olsen’s SW3 PCA run (surface water samples), collected sample to characterize the signature 
of potential sources.  The vast majority of these were presumed from the outset to reflect the 
impact of the application of poultry-litter impact (64 edge-of-field samples).21  Only six samples 
were collected with the intent of characterizing other potential sources.  Two were collected with 
the intent of characterizing the impact of cattle (surface waters from cow-pastures where poultry-
litter had never been applied).22  Four were collected to characterize waste-water treatment plant 
samples (WWTP) effluent.23  Other potential sources in the watershed were never evaluated, 
sampled or characterized (at least not for the 26 parameters used in Olsen’s PCA).  In deposition 
testimony, Olsen acknowledged that he had collected no samples to characterize sludge 
application, wastewater disposal by spray irrigation, biosolids application, nursery runoff, golf 
course runoff, wildlife feces, swine lagoon input, septic systems, runoff from dirt roads, or 
commercial fertilizer applications.24 

                                                 
21 Olsen (2008a). p. 6-6 & Figure 6.4-2a.  Olsen Deposition. 9/10/08. pp. 51-52.   
22 Olsen Deposition. 9/10/08. pp. 53.  (Lines 1-5). 
23 Olsen (2008a). p. 6-4.  
24 Olsen Deposition. 9/11/08. pp.  521-534. 
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2.3 Summary of Olsen’s Major PCA Runs 
Olsen did 22 PCA runs for water, and 7 PCA runs for solids.  The results of most of these are 
never discussed in Olsen’s report.  His opinions are based primarily on “four major PCA runs”25 
designated as such because they are “the most important to the investigation or project 
objectives.”26 The four major runs cited by Olsen were SW3, SW17, SD1, and SD6.  I have 
added a fifth to that list (SW22) because it forms the basis of Olsen’s opinion regarding the 
impact of cattle in the IRW.  These five PCA runs were included in a category Olsen refers to as 
“investigative runs,” implemented for the direct purpose of source identification in the 
watershed. 27 Most of the other PCA runs fall into a category Olsen calls ‘sensitivity runs’ which 
were implemented to evaluate the effect of different permutations of the database (i.e. number of 
parameters, missing data cutoff criteria, groups or types of samples included, etc.). Each of 
Olsen’s five major PCA runs are discussed in the remainder of this section of the report, along 
with a critical review of the opinions that Olsen draws from them. 

2.3.1 SW3: Surface Water 
SW3 was the PCA run relied upon by Olsen to reach the most consequential opinion of his 
report: that poultry was “by far the dominant contamination source” in surface waters of the 
IRW.28  As such, this is the PCA run that I address in greatest detail throughout my report.  Table 
2-1 shows the total number of samples considered (2,325) as well as the number of sample per 
group (EDA_Group). Only 573 samples met Olsen’s missing data criterion.  Even then, some 
variables had much higher incidence of missing data, especially bacteria (coliform, E. coli, 
enterococcus, and fecal coliform).  Variables missing in more than 10% of the samples are 
shown in red text.  Appendix A (Section A2.1) includes further discussion of the missing data 
problem and the substitution method used by Olsen. 

Olsen performed PCA on this 573 by 26 matrix after implementing a log transformation.  
Transformations are discussed in Appendix A (Section A2.2). He implemented PCA using the 
Factor Analysis module within the commercial software package SYSTAT (Section A2.3).  
Olsen used the SYSTAT-reported eigenvalues, percent variance accounted for, loadings, and 
coefficients (Section A2.3) but chose to calculate scores himself (outside of SYSTAT – in Excel) 
and in so doing failed to undo the log transformation (Section A2.3).   SYSTAT’s criteria 
indicated the presence of five significant principal components, but Olsen ultimately ignored that 
information and reports only the results of the first 2 principal components.  His justification for 
a 2 PC model was that it accounted for 56.2 percent of the variance.29  In Appendix A (Section 
A2.4) I discuss this decision, and I evaluate the goodness of fit of Olsen’s SW3 PCA run using 
more sophisticated methods.  In that discussion, I make it clear that for several key parameters 
that Olsen considers important parameters in his unique poultry waste signature30 (copper, 
arsenic, zinc, and four bacteria variables) Olsen’s 2 PC model does a poor job of recreating the 
original data.   

The remainder of this section is a summary and discussion of Olsen’s interpretation of SW3 
results.  Bearing in mind the numerous methodological problems discussed in Section 2.2.2, for 
purposes of this discussion, I take Olsen’s PCA results at face value, and summarize his 
interpretations based on those results.  
                                                 
25 Olsen (2008a).  p. 6-51. Last paragraph. 
26 Olsen p. 6-50.  See also Table at the top of page 6-52. 
27 Olsen (2008a).  p. 6-50.  Olsen’s four major PCA runs and SW22 were also considered ‘investigative runs’ 
28 Olsen (2008a). p. 1-2. 
29 Olsen (2008a).  pp. 6-50 to 6-52. Figure 6.11-1.  
30 Olsen (2008a). p. 1-2 (3rd bullet), and  p. 6-27. 
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Table 2-1.  Summary of Olsen PCA Run SW3. 
 

EDA_Group

SW3 S W  - E dge of F ie ld 89 65 A L_T 573 0% Log10
0427_S W _3 S W  - Lak e - Tenk i lle r 533 29 A LK A LINITY 565 1% Log10

S W  - S tream  - B F C 960 88 A S _T 569 1% Log10
S W  - S tream  - F orest 2 0 B A _T 573 0% Log10
S W  - S tream  - HF C 152 20 CA _T 573 0% Log10
S W  - S tream  - High Flow -  B FC 55 48 CL 563 2% Log10
S W  - S tream  - High Flow -  HFC 240 177 COL IFO RMS 412 28% Log10
S W  - S tream  - NA 10 0 CU_T 569 1% Log10
S W  - S tream  - P A  -  B FC 12 0 E CO LI 340 41% Log10
S W  - S tream  - P A  -  HFC 22 0 E NT ERO 410 28% Log10
S W  - S tream  - S y nopt ic 24 1 F E_T 573 0% Log10
S W  - S tream  - US G S - B FC 107 60 F ECAL 410 28% Log10
S W  - S tream  - US G S - HFC 115 81 K _T 573 0% Log10
S W  - S tream  - W W TP 4 4 M G _T 573 0% Log10

To tal 2325 573 M N_T 573 0% Log10
NA _T 573 0% Log10
NI_T 569 1% Log10
NO2_NO3 564 2% Log10
P _S OL_REA C 559 2% Log10
P _T 571 0% Log10
P _TD 572 0% Log10
S O4 563 2% Log10
TDS 538 6% Log10
T KN 505 12% Log10
TOC 551 4% Log10
ZN_T 569 1% Log10
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Information from  Olsen-produced spreadsheet ‘PCA_Water_Runs_Table.xls’ as attachment to 5/9/08 email from Chappell to Olsen. 

Olsen began his SW3 interpretation by plotting PC loadings as bar graphs and noting which 
analytes had the highest loadings.  A direct copy of Olsen’s Figure 6.11-10 is shown below as 
Figure 2-2.  Pointing to these bar graphs, Olsen reported a similarity between PC1 (left panel of 
Figure 2-2) and presumed “poultry-waste impacted water.”31 That led him to conclude that “PC1 
has been identified as associated with poultry waste.”32 Olsen follows similar logic with respect 
to PC2 loadings (right panel of Figure 2-2) and ultimately opined that “PC2 has been identified 
as associated with WWTP effluent.”33 

There are serious flaws in the logic that led to these conclusions.  Olsen justifies his 
interpretation with a poorly reasoned, apples-to-oranges comparison of loadings (presented in 
abstract units of the PCA: log-transformed, correlation coefficients) to chemical data (in units of 
concentration).  But the problem goes beyond units and stoichiometry.  Olsen also makes the 
fundamental mistake of reification – equating a principal component with a thing with physical 
or chemical meaning.  Olsen reifies or equates PC1 with “poultry-waste”, and PC2 with WWTP 
effluent.  Reification has been criticized in the literature for more than 25 years.  The problems 
of reification of principal components are discussed in more detail in Appendix A (Sections 
A1.2, A1.3; A1.4.2, A2.5, A2.5.1).   

                                                 
31 Olsen (2008a). p. 6-57. 2nd paragraph. 
32 Olsen (2008a). p. 6-57. 3rd paragraph. 
33 Olsen (2008a). p. 6-57. 3rd paragraph. 
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Figure 2-2.  Olsen’s loadings bar graphs for PCA run SW3. 
Direct copy of Figure 6.11-10 of Olsen’s Report  

Based on Olsen’s opinion that PC1 equals poultry and PC2 equals WWTP, he ultimately 
classified samples in SW3 with respect to their supposed predominant impact.  Figure 2-3 is a 
direct copy of Olsen’s Figure 6.11-18c, and shows his interpretation of the limits of dominant 
impact from his two supposed primary sources: “Poultry-waste Dominant Impact” and “WWTP 
Dominant Impact.”  To the reader unfamiliar with PCA, the red circled regions of Figure 2-3 
may be misleading.   These circles are not the objective results of the PCA method.  They are not 
determined by SYSTAT or by any mathematical procedure.  Rather, they represent a subjective 
interpretation on Olsen’s part.   

The limits of the two red ovals (shown graphically on the figure) were also defined numerically 
by Olsesn, as is seen in the quote below. 

“The two groups were selected by examining the locations and chemistry/bacterial composition 
of the individual samples.  For the “WWTP dominant impact” group, the PC2 scores were 
selected to be above a value of 4.7.  As shown on Table 6.11-11, samples below about a score of 
4.8 are typically not in locations downgradient of WWTP discharges so cannot be impacted by 
WWTPs.  For the “poultry-waste dominant impact” group, a PC1 score of greater than 1.3 was 
selected.  This is a conservatively high value and could have been set lower to include more 
samples.”34 

As is made clear in this quote, Olsen considers any sample exhibiting a PC2 scores greater than 
4.7 to be impacted by WWTP effluent, and any sample with a PC1 score greater than 1.3 to be 
impacted by poultry.  

                                                 
34 Olsen (2008a). p. 6-59 to 6-60 (emphasis added). 
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Figure 2-3.  Olsen’s PCA scores-plot for PCA run SW3 (zoomed in on ‘expanded view’ area). 
This figure is a direct copy reproduction of Olsen Figure 6.11-18c.  The red ovals and annotation “Poultry-Waste 
Dominant Impact” are Olsen’s.  I added the PC1=1.3 line.  

Olsen’s conclusion of a 1.3 PC1 poultry-impact threshold (highlighted in quote above) is the 
most consequential decision of his entire PCA.  Olsen and his colleagues have repeatedly 
referred to Olsen’s “poultry signature.” But such a term is not a precise description of a PCA-
based criterion.  Figure 2-3 clarifies Olsen’s actual numerical criterion.  When he and other 
plaintiff experts testified at the Preliminary Injunction with regard to Olsen’s “unique poultry 
waste signature” 35 or “chemical fingerprint”36 it is the 1.3 PC1 threshold to which they were 
referring.  A sample that supposedly exhibits Olsen’s “unique poultry waste signature” is a 
sample that plots to the right-side of the PC1=1.3 line on Figure 2-3.    

This threshold is entirely arbitrary, and Olsen has acknowledged as much.  He has testified that 
there are samples with PC1 scores less than 1.3 that he believes may be impacted by poultry37 
and he has acknowledged samples with PC1 scores greater than 1.3 that he concedes are not 
impacted by poultry.38   The arbitrary nature of this threshold discussed in more detail in 
Appendix A (Section A2.5.2). 

Part of the reason that the 1.3 PC1 threshold is arbitrary is that it is not supported by the data 
Olsen supposedly relied upon to validate the threshold.  The basis of Olsen’s conclusion of a 1.3 
PC1 threshold for poultry, and a 4.7 PC2 threshold for WWTP was his “spatial analysis.”  That 
                                                 
35 See PI Hearing Transcript: Olsen at p. 806;  Teaf  at p. 210; Harwood at p. 672;  
36 See PI Hearing Transcript: Olsen at p. 815;   
37 Olsen Deposition. 9/11/08.  p. 330 (Line 19) to 331 (Line 20).  See also, quote in Section 2.3.1 of the main report. 
38 Olsen Deposition. 9/10/08.  p. 274. (emphasis added). 
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analysis involved testing his PCA interpretation against purported independent ground-truth 
information (i.e. data not included in the actual PCA such as poultry house density data and the 
locations of waste water treatment plants).39  In support of his poultry impact threshold 
(PC1>1.3) Olsen presented the following discussion, based on poultry-house density:   

“The value [the 1.3 PC1 threshold] was selected by examining the locations and scores of 
samples, particularly the scores of reference samples and samples in low poultry house density 
areas.  In summary, the samples with PC1 scores below approximately 1.3 include all samples 
from reference locations (six total), 9 out of 10 samples from HFS30 (small watershed location 
with low poultry house density) and 10 out of 11 samples from HFS28A (small watershed with 
low poultry house density).  The one sample from HFS30 and the one sample from HFS28A with 
higher PC1 scores were collected during extreme flow events.  Overall 441 of the 573 samples 
(77%) had PC1 scores higher [than] 1.3 and show some poultry contamination.”40 

Note that this discussion addresses only five sampling locations (2 high flow sampling stations in 
the watershed (HFS28A and HFS30) and 3 base-flow reference stream locations (six samples 
from three locations) outside the watershed).  This constitutes 27 of 573 SW3 samples (<5%) 
collected from 5 of 175 sample locations (< 3%).  Olsen’s report makes no mention of samples 
that contradict his poultry impact threshold, so the clear implication is that this subset of the data 
is representative of Olsen’s spatial analysis a whole.  This is not the case, and much of the 
remainder of this report will focus on the numerous inconsistencies in Olsen’s theory, as 
revealed by the spatial analysis.   

The bottom-line illustration of Olsen’s interpretation of SW3 with respect to his poultry impact 
interpretations was his Figure 6.11-23 (reproduced below as Figure 2-4).    On that map, a green 
dot ( ) indicates a SW3 surface water sample location with an average PC1 score less than 1.3.  
A red dot ( ) indicates a SW3 surface water sample location with an average PC1 score greater 
than 1.3. As such red-dots on his figure represent “poultry impacted” samples (see legend on 
Figure 2-4).  In deposition testimony, Olsen confirmed this, but included the caveat/qualifier that 
a red dot in this map indicates only that “There’s some poultry contamination.  Nothing about 
dominance.”41   In other words, a sample classified by Olsen as “WWTP dominant” would plot 
on this map as a red-dot, because all samples in his “WWTP Dominant Impact” area exhibit PC1 
scores greater than 1.3 (see Figure 2-3). 

The 1.3 PC1 threshold and this map then led Olsen to conclude that “78 percent of the locations 
sampled in the IRW show some poultry contamination.    Locations with PC1 scores higher than 
1.3 are shown in red; those with scores less than 1.3 are shown in green.”42 This is the basis of 
Olsen’s flagship opinion coming out of his PCA: that “Poultry waste is by far the dominant 
contamination source in the IRW when compared to other sources.”43 Clearly, the validity of this 
opinion is directly dependent on the validity of the 1.3 threshold, which in turn is dependent on 
the validity of Olsen’s spatial analysis.  As such, the spatial analysis deserves scrutiny that goes 
beyond the five sample locations discussed by Olsen in the above quote.   

 

                                                 
39 Olsen (2008a). p. 6-34: Steps 12 and 13.   
40 Olsen (2008a). p. 6-59 to 6-60. (emphasis added). 
41 Olsen Deposition (9/11/08). p. 339 (Lines 12-13). 
42 Olsen (2008a). p. 6-60. 2nd paragraph, as corrected by Olsen’s errata (Olsen, 2008b – page 7). 
43 Olsen (2008a). p. 1-2.  Bullet 3. 
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Figure 2-4.  Olsen’s red-dot / green-dot map showing average PC1 scores for PCA run SW3. 
This figure is direct copy of Olsen’s Figure 6.11-23.  On this map, if multiple samples were collected from a 
location, the average of all PC1 scores from that location was taken. All locations that exhibit an average PC1 score 
> 1.3 (using Olsen’s PCA run SW3) are shown as red circles ( ) and are classified as ‘poultry-impacted’ or so the 
legend indicates.  Olsen admitted in deposition testimony that this is actually not true.  This is discussed in more 
detail in Sections 3.1 and 3.2. 

In Olsen’s quote above, he points to data from only two high-flow sampling stations, both of 
which he claims (1) have average PC1 scores less than 1.3; and (2) are located in low poultry-
house density subbasins within the IRW.44  Figure 2-5 shows Olsen’s average PC1 scores for all 
high-flow samples (including the two cited by his quote above: HFS28A and HFS30). On my 
map, I have plotted red-dots and green-dots based on Olsen’s 1.3 PC1 threshold (just as Olsen 
did in his Figure 6.11-23 – Figure 2-4 above).  However, my map is different from Olsen’s 
Figure 6.11-23 in that (1) I have plotted only high-flow samples, and (2) I used Olsen’s poultry 
house density data (rather than a generic yellow shaded area) as my basemap.   

                                                 
44 Olsen (2008a). p. 6-60.  
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Figure 2-5.   PC1 scores map for high-flow sample stations, plotted over Olsen’s poultry house density 

data.  
The two high-flow sample stations cited by Olsen in support of his 1.3 PC1 criterion (HFS-28A and HFS-30 - p. 6-60 of his 
report) are labeled.  Poultry house data were produced as GIS shape files by Olsen in his production of materials relied-upon.  

Having plotted PC1 scores over the data supposedly relied upon by Olsen for his spatial analysis, 
there are clearly problems with his interpretation.   Both high-flow stations cited by Olsen in the 
quote above (HFS-28A and HFS-30) are located in low poultry-house density areas (just as 
Olsen said).  HFS-28A plots as a green-dot within a low poultry-house density area (again, just  
as Olsen indicated).  But HFS-30 is shown as a red-dot within a low poultry-house density area 
(i.e. HFS-30 had an average PC1 score > 1.3).  This contradicts Olsen’s statement in the quote 
above, and the HFS-30 data are not consistent with Olsen’s assertion of a conservative 1.3 PC1 
poultry-impact threshold.  The seven high flow samples collected at HFS-30 yielded an average 
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PC1 score greater than 1.3 (1.3022) and by the criteria stated in Olsen’s report, should have been 
shown on his figure as a red-dot, not a green-dot.45    

The inconsistency in Olsen’s spatial analysis is not limited to HFS-30.   If we scan across the 
map above (Figure 2-5) we see many red-dots plotting in green sub-basins.  Olsen’s spatial 
analysis discussion in his report never acknowledges such samples that contradict his theory, 
only the two high-flow stations that supposedly support it.   In subsequent deposition testimony, 
Olsen acknowledged that there were “a few minor exceptions” to his 1.3 criterion.46  Through the 
course of his September 2008 deposition, Olsen eventually conceded that there were: (1) cow-
pasture edge of field samples that had PC1 scores greater than 1.3 (2 locations); (2) cattle 
impacted springs that had PC1 scores greater than 1.3 (two locations); (3) waste-water treatment 
plant effluent samples that had PC1 scores > 1.3 (three locations); and (4) samples collected in 
Tahlequah, Oklahoma (an area of high human population density, but low poultry house density) 
that had PC1 scores > 1.3 (six samples from five locations). There are also major contradictions 
to Olsen’s theory with regard to base-flow samples.  These contradictions to Olsen’s poultry 
impact criteria and his spatial analysis are explored in greater detail in Section 3.0. 

 

2.3.2 SW17: Surface Water Plus Wells, Springs and Geoprobe Samples 
PCA run SW17 included the same 573 sample, 26 variable data set used for SW3, plus 126 
additional groundwater samples (17 geoprobes, 49 springs and 60 wells – Table 2-2).  Geoprobe 
is a field method that allows collection of shallow groundwater using a direct push method.47  
Well samples represent generally deeper groundwater collected from existing groundwater 
wells.48  Springs are surface water features, but were classified by Olsen as ‘groundwater’ 
because they are presumably fed, at least to some degree, by groundwater seeps.49  

The addition of these samples brought the total number in SW17 to 699.  The sample types, 
number of samples, number of variables, missing data criterion, and transformations used for this 
PCA run are shown on Table 2-2 below.  Variables that had ≥10% missing data are shown in red 
text. 

                                                 
45 This explains why in deposition testimony, Olsen changed the PC1 threshold from 1.3 (as indicated in his report) to 1.30226 

(See Olsen Deposition 9/10/08. p. 218 (Lines 5-7) and p. 219 (Lines 13-18)).  Apparently, Olsen not only believes that his PC1 
threshold is not arbitrary, but that it is precise to the fifth decimal place. 

46 Olsen Deposition. 9/10/08.  p. 274. 
47 Olsen (2008a). p. 6-17.  Bullet 5. 
48 Olsen (2008a). p. 6-17.  Bullet 6.  
49 Olsen (2008a). p. 6-17.  Bullet 7. 

Case 4:05-cv-00329-GKF-PJC     Document 2169-3 Filed in USDC ND/OK on 06/05/2009     Page 22 of 125



 

Johnson: Olsen Rebuttal Report 19

 

Table 2-2.  Summary of Olsen PCA Run SW17. 

 

EDA_Group

SW17 GW - Geoprobe 19 17 AL_T 699 0% Log10
0428_SW_17 GW - Spring 57 49 ALKALINITY 691 1% Log10

GW - Well 62 60 AS_T 695 1% Log10
SW - Edge of Field 89 65 BA_T 699 0% Log10
SW - Lake - Tenkiller 533 29 CA_T 699 0% Log10
SW - Stream - BFC 960 88 CL 689 1% Log10
SW - Stream - Forest 2 0 COLIFORMS 537 23% Log10
SW - Stream - HFC 152 20 CU_T 695 1% Log10
SW - Stream - High Flow - BFC 55 48 ECOLI 447 36% Log10
SW - Stream - High Flow - HFC 240 177 ENTERO 527 25% Log10
SW - Stream - NA 10 0 FE_T 699 0% Log10
SW - Stream - PA - BFC 12 0 FECAL 523 25% Log10
SW - Stream - PA - HFC 22 0 K_T 699 0% Log10
SW - Stream - Synoptic 24 1 MG_T 699 0% Log10
SW - Stream - USGS - BFC 107 60 MN_T 699 0% Log10
SW - Stream - USGS - HFC 115 81 NA_T 699 0% Log10
SW - Stream - WWTP 4 4 NI_T 695 1% Log10

Total 2463 699 NO2_NO3 690 1% Log10
P_SOL_REAC 685 2% Log10
P_T 697 0% Log10
P_TD 698 0% Log10
SO4 689 1% Log10
TDS 656 6% Log10
TKN 631 10% Log10
TOC 677 3% Log10
ZN_T 695 1% Log10
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Information from Olsen-produced spreadsheet ‘PCA_Water_Runs_Table.xls’ attachment to 5/9/08 email from Chappell to Olsen. 

Olsen reported the same types of results for SW17 as he did for SW3.  Scree-plots and average 
eigenvalue criteria indicated five significant principal components, but like SW3 he looked only 
at the first 2 principal components, and cited the 50.1 percent of the variance accounted for 
(barely half) to justify that decision.50  In terms of interpretation, Olsen reported that:  

“A similar evaluation of PC1 scores was performed for the SW17 run as for the SW3 run where 
the PC scores for reference samples and samples from locations in areas of low poultry house 
density were evaluated. This resulted in determination that the same threshold PC1 score could 
be used to determine poultry waste impact (samples with PC1 > 1.3).”51   

Note in the first underlined portion of the quote, that Olsen cites a similar spatial analysis as he 
did for SW3, with respect to his poultry house density data.  As indicated in the second and third 
underlined portions of the quote, that analysis led Olsen to conclude an identical poultry-impact 
threshold for SW17 (PC1 > 1.3).  

Olsen then presented the groundwater equivalent of his red-dot green-dot map, showing the 
locations of samples with PC1 scores greater than 1.3.  This map is reproduced below as Figure 
2-6.     

 

                                                 
50 Olsen (2008a). pp. 6-50 to 6-52. 
51 Olsen (2008a). p. 6-61. 2nd Paragraph. Emphasis added. 
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Figure 2-6.  Direct copy of Olsen’s Figure 6.11-24: average groundwater and spring PC1 scores. 

Once again, Olsen showed his classification of groundwater on a generic base map.   Figure 2-7, 
below, shows the same information plotted over Olsen’s poultry house density data. Once again, 
there are numerous red-dots plotting in green areas and vice versa.  Olsen addressed this 
inconsistency, at least in part, by pointing out that “The three wells known to be greater than 150 
ft in depth (actual depth = 203 to 803 ft) did not show poultry waste contamination.” These three 
wells were not identified by Olsen, and even if they were, it cannot explain all the 
inconsistencies observed here.   Olsen’s groundwater spatial analysis does not support his 
PC1>1.3 poultry impact classification.   

Based on his 1.3 PC1 criterion, Olsen then reported that 51 of 112 locations on his groundwater 
red-dot / green-dot map (46%) plotted as red-dots.52  By his criterion, less than half of the 
groundwater samples in the IRW are impacted by poultry litter.  Even then, that number does not 
describe Olsen’s presumed impact to homeowner wells, because domestic wells were just one of 
three categories of samples included as “groundwater.”  As indicated on Table 2-3 below 
(reproduced from the table on page 6-61 of Olsen’s report) the percentage of homeowner wells 
that exhibit PC1 scores > 1.3 is only 40%.   

                                                 
52 Olsen (2008a). p. 6-61. 2nd paragraph. 
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Figure 2-7.  Olsen’s red-dot/green-dot map for groundwater, plotted on poultry-house density map 

instead of generic base map. 
 

 

Table 2-3.  Sample Counts and Percentage of  SW17 Groundwater Samples Exceeding Olsen’s 1.3 PC1 
Threshold 

Sample Type Sample Counts Percent > 1.3 
Geoprobe 16/17 94 
Springs 19/49 39 
Existing Wells 24/60 40 
Reproduced from Olsen (2008a) p. 6-61    
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Recall also that, according to Olsen, a PC1 score greater than 1.3 means only that there is some 
poultry-impact.  It says nothing about dominance.53 According to Olsen, in order to be classified 
as “poultry-waste impact dominant” a sample must exhibit a PC1 score > 1.3 and a PC2 score < 
4.7 to 5.0.54  Only 15 percent of groundwater wells meet this criterion (9 out of 60: Figure 2-8).   

 
Figure 2-8.  Scores plot for SW17 with groundwater samples (homeowner wells) highlighted. 

Assuming that Olsen’s PC1 and PC2 thresholds have any validity, groundwater is not nearly the 
poultry-impact problem that Olsen’s claims for surface water.  But once again the validity of 
Olsen’s criteria is not supported by his spatial analysis.  The locations of the nine well samples 
classified by Olsen’s criteria as “poultry-waste impact dominant” are shown on Figure 2-9 with 
respect to Olsen’s poultry-house density base map.  The majority of these samples (six of nine) 
are located in areas of low poultry house density. Four plot in sub-basins that Olsen’s map 
indicates have zero poultry-house density (dark-green).  Two more plot within Olsen’s second-
lowest poultry house density classification (light-green).  None of these nine samples plot within 
Olsen’s maximum poultry-house density classification sub-basins (red). 

                                                 
53 Olsen Deposition (9/11/08). p. 339 (Lines 12-13). 
54 Olsen Deposition (9/10/08).  p. 279 (Lines 14-21).  
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Figure 2-9.  Locations of the nine (out of 60) SW17 groundwater wells classified by Olsen as “poultry-

waste impact dominant” 
Note: The majority of these nine samples plot in areas of low-poultry house density.  Four plot in zero poultry house density sub-
basins (dark-green).  Two plot within the second lowest poultry house density classification of sub-basins (light-green).  None 
plot in Olsen’s maximum poultry-house density classification sub-basins (red). 
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 When Olsen discussed PC2 scores for SW17, he reported that:  

“In addition to the samples showing poultry waste impact, some of the groundwater 
samples have higher PC2 scores than the typical samples identified as being impacted by 
poultry waste contamination (relatively lower PC2 scores).  These groundwater samples 
potentially show human waste impact.  Overall about 20 wells may show potential human 
impact.”55   

In this quote, Olsen points to 20 groundwater samples that exhibit PC2 scores above his WWTP 
threshold of 4.7.  In deposition he acknowledged that there were actually 29 SW17 samples with 
PC2 scores above his WWTP threshold.  But even that number is wrong.   There are actually 32 
groundwater samples in Olsen’s PCA run SW17 with PC2 scores greater than 4.7.  As such, the 
number of wells that Olsen would classify as predominantly WWTP impacted is 32 of 60, or 
53%.  Olsen’s WWTP criterion indicates that the majority of the wells sampled show evidence of 
WWTP impact.  The locations of these wells are shown on Figure 2-10. 

There is another important point within the above quote.  Regardless of whether Olsen believes 
the number is 20, 29 or 32, his conclusion is that they  “potentially show human waste impact.”  
But Olsen’s original interpretation of PC-2 was more much more specific than ‘human waste.’ 
He identified PC2 as “associated with WWTP effluent.”56  The implication in Olsen’s 
interpretation of data from groundwater wells is that he equates the chemical fingerprint of large-
scale WWTP effluent with untreated and/or small-scale, domestically treated human waste (i.e. 
septic tanks).  Olsen has apparently concluded that the chemical/biological signatures of treated 
WWTP effluent and septic tank inputs are identical, but he never discusses the basis of such an 
opinion.  

                                                 
55 Olsen (2008a). p. 6-61. 4th paragraph. 
56 Olsen (2008a). p. 6-57. 3rd paragraph. 
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Sample  Date Owner Address PC2 Score Sample Date Owner Address PC2 Score

GW‐02 7/07/06 Collins Westville, OK 74965 5.166 GW‐39 8/10/06 Oakball Rt 1 P.O. Box 1038 4.741
GW‐03 7/11/06 Saunders 55286 S. 706 Rd. Colcord, OK 74338 6.575 GW‐40 8/15/06 Faubian Rt. 6 Box 1339, Stilwell, OK 74960 8.942
GW‐08 7/13/06 Glenn 56492 S. 700 Rd. Colcord, OK 74338 4.969 GW‐50 1/22/07 Beaver Rt. 2 Box 431, Westville, OK 5.135
GW‐09 7/18/06 Schwabe 4053 Hwy 10 Kansas, OK 74347 5.400 GW‐52 1/22/07 Ames 4795 Cedar Dr. W Siloam Springs (Colcord) 6.116
GW‐10 7/18/06 Schwabe 4053 Hwy 10 Kansas, OK 74347 5.118 GW‐53 1/22/07 McCoy RR1 Box 49 4.936
GW‐11 7/19/06 Brown Rt. 4 Box 2065 Stilwell, OK 74960 4.962 GW‐54 1/23/07 Reese Rt 1 Box 154 Watts, OK 74964 6.228
GW‐12 7/20/06 Blagg 50769 S 725 Rd. Colcord, OK 74338 5.189 GW‐55 1/23/07 McAlpine 12979 S 543 Rd, Tahlequah, OK  4.731
GW‐15 7/20/06 Welch Rt. 4 Box 2375 Stilwell, OK 6.826 GW‐57 1/23/07 Blagg 50769 S 725 Rd. Colcord, OK 74338 8.358
GW‐17 7/20/06 Peteet PO Box 912 Stilwell, OK 74960 4.859 GW‐61 7/11/07 Choate PO Box 897, Westville, OK 5.215
GW‐21 7/24/06 Baird Rt. 3 Box 825 Stilwell, OK 74960 5.244 GW‐62 7/11/07 Scism RR2 Box 567, Westville, OK 5.229
GW‐28 7/26/06 Millican 6482 Pine Dr. Colcord, OK 74388 4.881 GW‐63 7/10/07 Dixon Rt. 1 Box 450, Watts, OK 74964 5.242
GW‐29 7/26/06 Granderson 57274 So. 711 Rd. Colcord, OK 74338 5.493 GW‐64 6/28/07 Kuelbs Rt 2 Box 584, Westville, OK 74965 5.427
GW‐30 7/26/06 Potter 53290 So. 670 Rd. Colocord, OK 74338 5.232 GW‐65 7/10/07 Kustanborter 21213 State Highway 116, Colcord, OK 5.181
GW‐35 8/10/06 Hester Rt 2 Box 375, Watts OK 74964‐9513 7.010 GW‐67 7/11/07 Sewell P.O. Box 16478 E 567 Rd, Del. County, OK 8.035
GW‐37 8/10/06 Rogers Rt 2 Box 1751‐A Stilwell, OK 74960 5.206 GW‐68 7/10/07 Turner RR01 Box 1010, Stillwell, OK 6.373
GW‐38 8/10/06 Fite Hwy 10, north of Hwy 62 intersection 5.045 GW‐69 7/30/07 Vance Rt 2 Box 181, Westville, OK 74965 5.198

 
Figure 2-10.  Locations, sample-dates and PC2 scores for 32 (out of 60) groundwater wells classified by 

Olsen as impacted by human waste. 
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2.3.3 SW22: Surface Water Plus Springs 
SW22 was not included in Olsen’s list of “four major PCA runs”57 which he designated as such 
because they were “the most important to the investigation or project objectives.”58  This is 
curious because SW22 forms the basis of Olsen’s cattle manure impact argument, which would 
seem to be important to project objectives.  As such, I have included it in this discussion.  SW22 
included the same 26 variables used in SW3 and SW17, but the samples differed.  SW22 
included all surface water samples included in SW3, as well as the 49 spring samples in SW17.  
Unlike SW17, SW22 did not include the geoprobe or groundwater well samples.  This resulted in 
a data set with 622 samples and 26 variables.   Sample types, number of samples, number of 
variables, missing data criterion, and transformations used for SW22 are shown on Table 2-4 
below.  Variables that had ≥10% missing data are shown in red text.  Once again, a 2 principal 
component model was chosen by Olsen, which this time accounted for 55% of the variance.   

Table 2-4.  Summary of Olsen PCA Run SW17. 

 

EDA_Group

SW 22 GW  -  S pring 57 49 A L_T 622 0% Log10
0504_S W _22 S W  - E dge of Fie ld 89 65 A LK A LINITY 614 1% Log10

S W  - Lake -  Tenk il ler 533 29 A S_T 618 1% Log10
S W  - S tream  - B FC 960 88 B A_T 622 0% Log10
S W  - S tream  - F or es t 2 0 CA_T 622 0% Log10
S W  - S tream  - HFC 152 20 CL 612 2% Log10
S W  - S tream  - High F low - BF C 55 48 COLIF ORM S 460 26% Log10
S W  - S tream  - High F low - HF C 240 177 CU_T 618 1% Log10
S W  - S tream  - NA 10 0 ECOL I 370 41% Log10
S W  - S tream  - P A  - B F C 12 0 ENTERO 450 28% Log10
S W  - S tream  - P A  - HF C 22 0 FE _T 622 0% Log10
S W  - S tream  - S y noptic 24 1 FECAL 446 28% Log10
S W  - S tream  - US GS  -  B FC 107 60 K _T 622 0% Log10
S W  - S tream  - US GS  -  HFC 115 81 M G_T 622 0% Log10
S W  - S tream  - W W TP 4 4 M N_T 622 0% Log10

Total 2382 622 NA_T 622 0% Log10
NI_T 618 1% Log10
NO2_NO 3 613 1% Log10
P _S O L_RE A C 608 2% Log10
P _T 620 0% Log10
P _TD 621 0% Log10
S O4 612 2% Log10
TDS 587 6% Log10
TKN 554 11% Log10
TO C 600 4% Log10
ZN_T 618 1% Log10
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Information from Olsen-produced spreadsheet ‘PCA_Water_Runs_Table.xls’ as attachment to 5/9/08 email from Chappell to Olsen. 
 
SW22 forms the basis of Olsen’s cattle-manure impact argument on page 6-61 and 6-62 of his 
report, and that argument is reproduced below, in its entirety: 

“Evaluation of Potential Impact of Cattle Manure 
The potential impact due to cattle manure was previously discussed in Section 6.4.2.  These mass 
balance calculations indicate that any impact or contamination from cattle manure would be small (< 
10-15 percent) compared to the impact due to poultry waste disposal.   Previous steps in this 
subsection (i.e. step 12 discussing waste characteristics) show that cattle manure and cattle manure 

                                                 
57 Olsen (2008a).  p. 6-51. Last paragraph. 
58 Olsen p. 6-50.  See also Table at the top of page 6-52. 
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leachate are very different in chemical composition when compared to poultry waste and poultry 
waste leachate.  Therefore, if cattle waste provides a major impact on contamination in the IRW, a 
dominant signature should be observed in the PCA.  To assist in this evaluation, samples with known 
cattle contamination were evaluated.  The chemical and bacterial compositions of these samples have 
been previously provided in Tables 6.11-10 and 6.4-2a).  The four samples documented with cattle 
contamination are:  SPR-LAL16-SP2, SPR-26, EOF-CP-1B and EOF-CP-1A.  Figure 6.11-25 shows 
the PC1 vs PC2 score plot for PCA run SW22 (surface water and springs).  Also shown on this figure 
are the locations of the four samples with potential cattle contamination.  Two of the samples (the 
springs) plot in the WWTP impact area while the other two samples plot on the edge of the poultry 
waste impacted area.   These four samples have very different PC scores and no consistent relation or 
group is observed in the PCA.  If cattle contamination contributed a significant impact to 
contamination in the IRW, a clear signature and associated group should be observed in the PCA and 
the four samples with cattle contamination would be in the group.  Based on the mass balance 
calculations, the comparison of chemical composition and the PCA analyses, cattle waste is not a 
major source of chemical contamination in the IRW.”59 

Olsen did not show loading bar-graphs, coefficient bar graphs or scree plots for this PCA run, but 
he did produce a single scores plot (referenced in the quote above and reproduced below as 
Figure 2-11).    

 
Figure 2-11.  SW22 scores plot: Samples with known cattle contamination plotted as red squares.  
Reproduction of Olsen Figure 6.11-25.  Annotation of sample -names for Olsen’s four cattle-impacted samples, and Olsen’s PC1  poultry-impact 
threshold (1.3) have been added. The sample shown as SPR-26 is actually the average scores from two individual samples (See Section 3.3.2). 

                                                 
59 Olsen (2008). p. 6-61 to 6-62.  Emphasis added. 
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On this graph, the “four samples documented with cattle contamination”60 are plotted as red 
squares.  All other SW22 samples are plotted as black dots.  The four cattle impacted samples 
plot across a wide area of the scores plot, and it is this range of variation that is the basis of 
Olsen’s argument, quoted above.  There are major problems with this argument, and they will be 
discussed in detail in Section 3.3 of this report.  But two of the most important problems are 
summarized here.  First, note that all four of Olsen’s “samples documented with cattle 
contamination”61 exhibit PC1 scores greater than 1.3.  Second, two of the four cattle impacted 
samples were edge-of-field samples collected from cow pastures (EOF-CP) where poultry litter 
had never been applied.62 Unlike the spring samples (SPR), these two EOF-CP samples were 
included in SW3 (the PCA run that formed the basis of Olsen’s poultry-impact arguments).  If 
we highlight the EOF-CP samples on Olsen’s SW3 scores plot, we see that both plot within 
Olsen’s “poultry-waste dominant impact” area (Figure 2-12). 

 
Figure 2-12.  SW3 scores plot with cattle impacted edge-of-field samples highlighted. 

                                                 
60 Olsen (2008a). p. 6-62 (line 5). 
61 Olsen (2008a). p. 6-62. Lines 4-6. 
62 See Field CDM/Lithochimea field notes from March 31, 2008 (STOK005374). 
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If one wishes to successfully challenge Olsen’s criteria for a “unique poultry waste signature” 
they need look no further than this figure.  This contradiction to Olsen’s theory was never 
disclosed in his report.  In addition, one could not see it for themselves on his score plots, 
because he did not use a unique symbol for EOF-CP samples.  Rather, Olsen showed EOF-CP 
samples on his SW3 score plots using the same symbol shape and color used for all other EOF 
samples.63   

In Olsen’s discussion of SW22 in his report, he never disclosed that all four cattle impacted 
samples exhibited scores greater than 1.3, or that two of them plot squarely within his poultry-
waste dominant impact area.  As discussed in Section 3.3 of this report, these omissions were not 
because he failed to recognize these contradictions, or their significance.  Section 3.3 will 
provide a detailed review of Olsen’s cattle impact argument, as well as a summary of how that 
argument evolved from the February 2008 PI hearing, to the subsequent collection of the cow-
pasture edge of field samples in March 2008, to his May 14 expert report, and ultimately to his 
September 2008 deposition testimony.   

 
2.3.4 SD1: Solids (Manure, Litter, Soils, Sediment – No Cores) 

Olsen’s PCA run SD1 included 32 variables measured in 20364 solids samples.  Solids samples 
were from three major groups: soil/sediment; cattle manure, and poultry litter.  The soil/sediment 
group was comprised of surface soils, Lake Tenkiller sediments (grab samples only – no core 
samples), small reservoir sediments and stream sediment.  Up to 6 missing data points were 
allowed per sample.  The sample types, number of samples, number of variables, missing data 
criterion, and transformations used for this PCA run are shown on Table 2-5 below.  Variables 
that had ≥10% missing data are shown in red text.   

                                                 
63 See Olsen (2008a) Figures 6.11-18c; 6.11-18d; and  6.11-18e 
64 Olsen reported that SD1 had 203 samples but the results file produced for this run (‘Results_Solids_0501_SD_1.xls’) reported 

scores for only 202 samples.  See Olsen (2008a - Table 6.11-7b).  The missing sample appears to be a poultry litter sample.  
Olsen does not explain the reason for this discrepancy.   
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Table 2-5.  Summary of Olsen PCA Run SD1. 

 

EDA_Group

SD1 SD - Cow Manuare 10 10 AL_T 203 0% Log10
0502_SD_1 SD - Litter 20 19 AS_T 203 0% Log10

SD - Litter - Plus Soil 1 1 BA_T 203 0% Log10
SD - Sediment - Lake - Small IRW Reservoirs 12 12 BE_T 203 0% Log10
SD - Sediment - Lake - Tenkiller - Grab 15 15 CA_T 203 0% Log10
SD - Sediment - St ream 125 77 CO_T 203 0% Log10
SD - Soil - Surface 86 69 COLIFORMS 179 12% Log10

T otal 269 203 CR_T 203 0% Log10
CU_T 203 0% Log10
ECOLI 113 44% Log10
ENTERO 120 41% Log10
FE_T 203 0% Log10
FECAL 155 24% Log10
HG_T 203 0% Log10
K_T 203 0% Log10
MG_T 203 0% Log10
MN_T 203 0% Log10
NA_T 203 0% Log10
NH4_WS 157 23% Log10
NI_T 203 0% Log10
NITROGEN 203 0% Log10
OM 198 2% Log10
P_MEHLICH 167 18% Log10
P_T 202 0% Log10
P_WS 181 11% Log10
PB_T 203 0% Log10
PH 195 4% None
SALTS 203 0% Log10
SO4_WS 157 23% Log10
STAPH 179 12% Log10
V_T 203 0% Log10
ZN_T 203 0% Log10
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Information from Olsen-produced spreadsheet ‘PCA_Solids_Runs_Table.xls’ as attachment to 5/9/08 email from Chappell to Olsen. 

 

Once again, a 2 principal component model was chosen, accounting for 55% of the variance.65 
He presents 2 PC score plots for SD1 in Figures 6.11-20a through 6.11-20f.  One of those 
(Figure 6.11-20c) is presented below as Figure 2-13 
   

                                                 
65 Olsen (2008a). p. 6-52.   Table at top of page 
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Figure 2-13.  Direct copy of Olsen’s Figure 6.11-20c: SD1 scores plot – varimax rotation. 
Eye symbol on the right has been added, and shows viewer’s perspective for Figure 2-14.   

The primary conclusion drawn from this plot was that cow manure samples plot separately from 
the poultry litter samples: 

“cattle manure plots on the figure in a distinctly different group than the poultry waste.  These 
two groups are most clearly separated using the varimax rotation.  However, the separate groups 
are also observed on the PC1 vs PC2 figure using no rotation (Figure 6.11-20f).  These figures 
show that cattle manure and poultry waste have distinct chemical/bacterial signatures.” 66 

On this plot, we see that there is separation between cattle manure (blue dashes), poultry litter 
(red dashes) and soil/sediment (all other symbols).  But, one of the basic aspects of interpreting a 
scores plot is that samples that plot close together have similar chemical composition.  Those that 
plot farther away have different chemical compositions.  Given that, note that soil/sediment 
samples generally plot closer to cattle manure then they do to poultry litter.  Olsen’s PCA plot 
shown above suggest that soil and sediments are more similar in composition to cattle manure 
than poultry litter, but he never acknowledges this.  But, for the first and only time in his report, 
he called on the scores from a third principal component in his discussion of this PCA run.  

Figure 2-14 is a direct copy of Figure 6.11-20e from Olsen’s report.  In contrast to the PC1 vs 
PC2 graphs (Figure 2-13) the red-dashes (poultry litter) plot directly on top of the soil/sediment 
samples, and both appear to be separated from the cow manure samples (blue dashes).   
 

                                                 
66 Olsen (2008a). p. 6-56. 2nd paragraph 
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Figure 2-14.  Direct copy of Olsen’s Figure 6.11-20e.  SD1 PC2 vs. PC3 scores plot . 

Pointing to this second graph, Olsen makes the point that:  
“cattle waste is distinct from the soils, and sediment samples.  The poultry waste samples 
are closely related [to] the soil and sediment samples.”67 

Olsen’s statement is misleading, and demonstrates a basic lack of understanding of PCA.  Figure 
2-14 shows the same PCA results as Figure 2-13.  Nothing has changed with respect to distance 
and separation of poultry litter samples compared to other samples.  The only thing that has 
changed is our angle of view.  In Figure 2-14 we are looking at the data from the perspective of 
the eye symbol that I added to the right side of Figure 2-13.  In the second view (Figure 2-14) we 
are just looking down the barrel of PC1.  That allows us to see where samples plot across a 
different 2-dimensional slice (PC2 vs PC3).  We can no longer see the separation along the PC1 
axis, but that separation did not suddenly vanish.  On Figure 2-14, the poultry litter samples 
appear to overlap sediment/soil samples, but that is only because we can’t tell how close the 
symbols are to our eye.   

Olsen’s argument is like holding your thumb in front of your face, directly in the line of sight 
between your eyes and the moon, and concluding that because your thumb and the moon overlap 
in your field-of-view, your thumb must be closer to the moon than it is to the tree 20 feet to your 
left.  At best, Olsen’s argument demonstrates a fundamental lack of understanding of PCA.  At 
worst, he is fully aware that poultry litter samples are not closer to soil/sediments on the second 
figure, in which case he is purposely deceiving the reader.  
 

                                                 
67 Olsen (2008a). p. 6-62. 2nd paragraph. 
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2.3.5 SD6: Solids (Manure, Litter, Soils, Sediment – Including Cores) 
Olsen’s final “major PCA run” was solids-run SD6.  This PCA run included all samples in SD1, 
along with samples from sediment cores collected from Lake Tenkiller.  Six cores were collected 
in Lake Tenkiller, but one was discarded (see Olsen report – Figure 2.12-1).  As such, this PCA 
run differs from SD1 in that it includes an additional 88 sediment samples collected from 5 
cores.  Olsen indicates that this is the only difference, but as seen in Table 2-6, it also differs in 
that it included just 23 variables (rather than 32 variables in SD1).  Nine variables missing in 
more than 10% of the SD1 samples have been removed from SD6.  Up to 5 missing data points 
were allowed per sample, and Olsen’s final SD6 data set had 299 samples and 23 variables.    
 

Table 2-6.  Summary of Olsen PCA Run SD6. 

EDA_Group

SD6 SD - Cow Manuare 10 10 AL_T 299 0% Log10
0501_SD_6 SD - Litter 19 19 AS_T 299 0% Log10

SD - Litter - Plus Soil 1 1 BA_T 299 0% Log10
SD - Sediment - Lake - Small IRW Reservoirs 12 12 BE_T 299 0% Log10
SD - Sediment - Lake - Tenkiller - Core 88 88 CA_T 299 0% Log10
SD - Sediment - Lake - Tenkiller - Grab 15 15 CO_T 299 0% Log10
SD - Sediment - Stream 121 85 CR_T 299 0% Log10
SD - Soil - Surface 85 69 CU_T 299 0% Log10

Total 351 299 FE_T 299 0% Log10
HG_T 299 0% Log10
K_T 299 0% Log10
MG_T 299 0% Log10
MN_T 299 0% Log10
NA_T 299 0% Log10
NI_T 299 0% Log10
NITROGEN 294 2% Log10
OM 288 4% Log10
P_T 298 0% Log10
PB_T 299 0% Log10
PH 282 6% None
SALTS 290 3% Log10
V_T 299 0% Log10
ZN_T 299 0% Log10
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 Information from Olsen-produced spreadsheet ‘PCA_Solids_Runs_Table.xls’ as attachment to 5/9/08 email from Chappell to Olsen. 

 

Olsen’s discussion of SD6 is a single, short paragraph.68  He reports that Lake Tenkiller cores 
show a general decrease in PC2 scores from shallow to deep, but beyond that statement, he 
presents no conclusions or opinions based on this analysis.  Rather, he just repeats the opinions 
of Bert Fisher, as paraphrased earlier in his report.   Given that no new opinions are presented in 
context of SD6, it is not clear why Olsen designated SD6 as one of four “major PCA runs.”  

                                                 
68 Olsen (2008a). p. 6-62. 3rd paragraph. 
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3.0 Major Contradictions to Olsen’s Interpretations 

If we ignore problems of Olsen’s methods, assumptions and implementation, and accept his PCA 
results at face value, there are major problems with his interpretation.  Some of these were 
discussed briefly in Section 2.3, as part of my summary of Olsen’s major PCA runs.   In Section 
2.3, I presented several examples where the purported ground-truth data and spatial-analysis that 
Olsen claimed to have used to evaluate the efficacy of his opinion conflict with his theory of a 
unique poultry waste signature based on PC1 scores greater than 1.3.  In this section I will 
review these conflicts in more detail and will show that in each case, Olsen either concealed 
conflicting information from the reader and/or presented a convoluted explanation, based on 
speculation, in order to explain it away.  These contradictions are not evident in Olsen’s report 
because he was selective in the examples presented and cited only a few instances that supported 
his theory. 

3.1   Tahlequah 
As part of my evaluation of Olsen’s PCA methodology, I reproduced SW3, and re-plotted his 
red-dot green-dot map.  Reproduction of that figure, using my calculated PCA scores is shown 
below as Figure 3-1.  Note on this figure that there are five sample locations within Tahlequah, 
Oklahoma.  All five show an average PC1 score greater than Olsen’s 1.3 poultry-impact 
threshold.  But Tahlequah is an area of low poultry house density.69  In Tahlequah, Olsen’s 
spatial analysis does not support his theory.   

Comparing my map (Figure 3-1) to Olsen’s red-dot green-dot map (Figure 6.11-23 of his report 
– reproduced as Figure 2-4 above) shows that he plotted these same Tahlequah samples as green-
dots.  Olsen’s map is wrong, as is shown on the table below.  The scores on Table 3-1 were taken 
directly from Olsen’s Appendix F, and show the PC-1 scores for six Tahlequah samples in PCA 
run SW3.70 All six had scores greater than 1.3.  They should have been plotted as red-dots on 
Olsen’s map. 

 

Table 3-1.  SW3 PC Scores for Tahlequah Samples 

 
Data from Olsen (2008a): Appendix F. 

 

                                                 
69 See Olsen Figure 2.5-1 as well as Figures 2-5 and 2-7 of this report. 
70 There were two sample from station 578, so in accordance with Olsen’s method description, the average of those two samples’ 

PC1 scores is shown as one of the five Tahlequah locations on the above map. 
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Figure 3-1.  Reproduction of Olsen Figure 6.11-23.  
Map generated using PC1 scores reported in Olsen’s Appendix F, and the 1.3 PC1 threshold criteria indicated by Olsen.  Note 
that in contrast to Olsen’s Figure 6.11-23, all Tahlequah samples on this figure plot as green dots rather than red-dots. 

In addition, when we highlight these six Tahlequah samples on Olsen’s SW3 scores plot (Figure 
3-2) we see that all six not only exceed his 1.3 poultry-impact threshold, they all plot within 
Olsen’s “Poultry Waste Dominant Impact” area.    Olsen appears to have changed the color of 
the Tahlequah samples on his Figure 6.11-23 because the PCA results did not agree with his 
theory.  But nowhere on his red-dot green-dot map, and nowhere in the text of his report does he 
disclose this to the reader.  Four months after submitting his report, in deposition testimony, 
Olsen did acknowledge it.  After confirming that the Tahlequah samples were shown as green 
dots on his figure, Olsen was asked to turn to his table that lists Principal Component 1 scores, 
whereupon Olsen interjected the following: 

Q Okay. Dr. Olsen, could you go to the table that reports your Principal Component 1 scores for SW3?   
A Yeah. Let me cut you short here now that we brought those up. Those were above 1.3, but based on 
the spatial analysis, I decided that those were not impacted by poultry, and I colored them green to this 
analysis of the percent.71   

                                                 
71 Olsen Deposition 9/11/08.  p. 405. 
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Figure 3-2.  Olsen’s SW3 scores plot (expanded view) with the six Tahlequah samples highlighted. 

Olsen then acknowledged that (1) his decision to change the Tahlequah was subjective; (2) it was 
made as a result of his spatial analysis, (3) he never disclosed it to the reader, (4) his treatment of 
the Tahlequah data is misleading, and (5) he should have disclosed all of this in his report.72  But 
consider this also in context of Olsen’s original rationale for conducting a spatial analysis.  The 
spatial analysis was offered by Olsen as a confirmatory line of evidence in support of his opinion 
that samples with PC1 scores greater than 1.3 exhibit a unique poultry waste signature.73 In 
reporting the results of the spatial analysis, he discussed only five sample locations, all of which 
were consistent with Olsen’s interpretation.74  This was offered by Olsen as evidence that his 1.3 
PC1 threshold was supported by an independent data set: poultry house density.75 Olsen now 
admits that he knew that PC1 scores in Tahlequah did not support that theory, and offers this 
same spatial analysis as the justification to veto his own criterion.   

Clearly, Olsen’s spatial analysis serves more than one purpose.  When it supports his opinion, it 
is offered as an independent line of evidence, used to validate his unique poultry waste signature 
criterion.  But when it contradicts his opinion, it is used quite differently.  The spatial analysis 

                                                 
72 Olsen Deposition 9/11/08.  p. 408-409. 
73 Olsen (2008a). p. 6-34 (Steps 12 and 13 bullets); p. 6-57 (4th paragraph); p. 6-59 (2nd paragraph). p. 6-60 (1st paragraph). Olsen 

Deposition testimony (9/10/08; p. 220). 
74 These 5 were consistent with Olsen’s theory, if we grant him the latitude to round HFS30 data down from 1.30226 to 1.3 – see 
Section 2.3.1. 
75 Olsen (2008a).  p. 6-59 to 6-60. 
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becomes the justification to recolor red-dots as green-dots, and make them appear to be 
consistent with his theory.  Olsen’s spatial analysis is instrument of convenience. 

3.2 Waste Water Treatment Plant Samples 
Waste water treatment plant samples (WWTP) are another example of where Olsen’s PCA 
interpretation is not supported by his spatial analysis.  Olsen collected four samples with the 
intent of characterizing the chemical/bacterial composition of WWTP sources.  Three of these 
were actual effluent samples collected at the Siloam Springs, Springdale and Rogers plants 
(Figure 3-3).  The fourth was given the sample name ‘Lincoln WWTP’, and was collected just 
downstream of the Lincoln WWTP (Figure 3-3).   

 
Figure 3-3.  Map showing locations of Olsen’s WWTP samples. 
Rogers, Springdale and Siloam Springs WWTP samples were actual effluent samples.  Lincoln was a surface water 
sample collected <2,000 feet downstream of the Lincoln WWTP (See Figure 3-5). 

All four of these samples were included in Olsen’s SW3 PCA run.  Figure 3-4 shows the SW3 
scores plot, with these samples highlighted and labeled.  The three effluent samples plot within 
Olsen’s WWTP Dominant Impact area, but they also exhibit PC1 scores above his 1.3 PC1 
threshold for poultry impact.  The fourth sample (“Lincoln”) collected downstream of the 
Lincoln WWTP actually plots within Olsen’s “poultry waste dominant impact” area.  The fact 
that all four samples yield PC1 scores greater than 1.3 is a major contradiction to Olsen’s theory 
of a PC1 threshold of 1.3 for determining the presence of a unique poultry signature.   
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Figure 3-4.  Olsen’s SW3 scores plot (expanded view) with the four WWTP samples highlighted. 
All exhibit PC1 scores above Olsen’s poultry impact threshold. 

Like Tahlequah, Olsen’s PCA classification of these samples as “poultry impacted” is not 
supported by his spatial analysis.  But unlike Tahlequah, Olsen did not veto his 1.3 criterion.  He 
showed them as red-dots on his Figure 6.11-23, and counted them among his poultry-impacted 
samples in his percentage calculations.  In deposition, Olsen acknowledged that the three WWTP 
effluent samples all had PC1 scores greater than 1.3 and conceded that (1) they should not have 
been classified as poultry-impacted samples; and (2) they needed to be removed from his 
poultry-impact percentage calculations.76  Two weeks later (9/24/08) Olsen submitted an erratum 
where the WWTP effluent samples (Siloam, Springdale and Rogers – but not Lincoln) were 
removed from his percentage calculations.  The revised text neither acknowledged nor explained 
the inconsistency of having all WWTP effluent samples exhibit PC1 scores greater than 1.3.  
Even though the Siloam, Springdale and Rogers WWTP samples span a wide range of Olsen’s 
“WWTP Dominant Impact” area (Figure 3-4) Olsen maintains that all other samples within the 
WWTP red-oval are poultry impacted.  He makes no change in the classification of stream water 
samples as a result of his original error in classification of the three WWTP effluent samples.77  

Olsen acknowledged that the intent of the Lincoln sampling was to get as close to the POTW 
outfall as possible.78 But in contrast to Siloam, Rogers and Springdale, he did not change his 

                                                 
76 Olsen Deposition. 9/10/08.  pp. 274-275.  9/11/08. pp. 335-336.  
77 Olsen Deposition. 9/11/08. pp. 335-336. 
78 Olsen Deposition. 9/11/08. pp. 557-558. 

Case 4:05-cv-00329-GKF-PJC     Document 2169-3 Filed in USDC ND/OK on 06/05/2009     Page 42 of 125



 

Johnson: Olsen Rebuttal Report 39

classification of Lincoln WWTP as ‘poultry impacted.’79   Neither did he address the degree to 
which his spatial analysis supported a conclusion of poultry-impact in this area, downstream of 
Lincoln.80  Figure 3-5 shows a map of the location of the Lincoln WWTP sample, in relation to 
Olsen’s poultry house density data and the Lincoln POTW.  It is located in an area of low poultry 
house density, within a 1.5 km of Lincoln and its POTW outfall.  A spatial analysis does not 
support the classification of this sample within the ‘predominantly poultry-waste impact’ area of 
the scores plot. 

 
Figure 3-5.  Location of  Lincoln WWTP sample with respect to poultry house density & Lincoln POTW.   
Poultry House Density data from Olsen production.  Lincoln POTW location from Jarman (personal communication).  

 

                                                 
79 Olsen Deposition. 9/10/08. pp.276-277. 
80 Olsen Deposition. 9/11/08. pp. 558-559. 
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3.3   Cattle Impacted Samples 
In Section 2.2.3, I briefly summarized the argument Olsen used to try to dismiss cattle manure as 
a source of contamination in the IRW.  This section provides a more detailed critical review of 
that argument, as well chronological summary of how Olsen’s cattle-impact argument has 
changed over time.   

 3.3.1  History of an Ever-Changing Cattle Impact Argument  
 3.3.1.1 February 2008: The Cattle Argument at the Time of the PI Hearing 
As part of the Preliminary Injunction (PI) process, Olsen testified that his PCA differentiated 
three sources of contamination in the IRW: (1) poultry, (2) waste water treatment plants; and (3) 
cattle waste.  Olsen testified to his ability distinguish between poultry, wastewater and cattle, and 
concluded that cattle waste inputs were not an important contributor. 81    

In that testimony, Olsen made it clear that he believed his PCA gave him the ability to 
distinguish between these three sources, but, he did not articulate a specific PCA criterion for 
what he considered “cattle impacted” (i.e. was it PC1 > 1.3, or PC2 > 4.7, or PC3>2).  Two 
weeks after this deposition, in a February 14, 2008 email to counsel and members of his 
technical team82  Olsen included the two hand-annotated PCA scores plots shown below (Figure 
3-6).   

The general shape of the data cloud is very similar to what we see in the SW3 and SW22 score 
plots presented by Olsen in his May 14 final report (see Figures 2-1 and 2-9 of this report).  Most 
of the data plot within an L-shaped data cloud.  His annotation of these graphs indicate that he 
interpreted samples located along the bottom of the “L” as “poultry dominance” and samples 
plotting along the vertical part of the “L” as WWTP dominance.”  This is essentially the same 
interpretation as is reflected in his final report.  But the cattle criterion is different.  His hand-
annotated PC scores plots show cattle-impacted samples all plotting away from (to the upper 
right of) the main part of the L. This hand-annotated scores plot sheds light on Olsen’s 
subsequent PI hearing testimony: 

“My conclusion is that the cattle signature is not significant.  I went to specific samples that I knew 
had cattle waste in it and I could see a distinct difference, particularly with the poultry waste.    So 
I knew what I was looking for and it just wasn't a dominant signature across the basin.  I found it 
in, like, significantly in one spring sample and I found it not significant in three other spring 
samples.  I found it significant in four edge of field samples and not so significant in five others.  So 
it's just not a dominant signature across the basin.  If it would have been, I would have found it.”83 

This February 2008 testimony provides no hint of the cattle criteria that is ultimately reflected in 
his May 2008 report.  Olsen says nothing about cattle-impacted samples “exhibiting very different 
PC scores” or the observation that some cattle impacted samples plot within both his WWTP and 
poultry dominant impact areas.  Specifically, Olsen does not identify cattle impacted samples 
plotting in his WWTP oval or his poultry-impact oval.  Instead he testified the he knew exactly 
what he was looking for, he saw distinct differences between cattle and poultry, and if cattle had 
been more dominant, he would have seen it.  But bear in mind: this testimony predates both the 
collection of the cow-pasture edge of field samples (March 31, 2008), and Olsen’s May 14, 2008 
expert report. 

                                                 
81 See Olsen PI Deposition. 2/2/08 pp. 93-97; 100-102. Preliminary Injunction Hearing.  2/ 21/08.  pp. 844-845. 
82 OlsenCORR0015829-15833 
83Olsen Preliminary Injunction Hearing Testimony.  February 21, 2008.  pp. 844-845. Emphasis added. 
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Figure 3-6.  Olsen’s hand-annotated scores plots: February 14, 2008 (surface-water and springs) 
The lower scores plot is a zoom-in on the box-framed area shown in the upper plot. (Source: OlsenCORR0015833). 
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3.3.1.2 May 2008: The Cattle Argument in Olsen’s Report. 
The cattle manure argument that appears in Olsen’s report (pages 6-61 and 6-62 of his report) is 
summarized and reviewed in Section 2.3.3 of this report, and differs from that presented as part 
of his February PI testimony.  His PI testimony indicated that he believed that there was distinct 
separation between cattle and poultry samples on a scores plot.  In contrast, his May 2008 report, 
points to “four samples documented with cattle contamination”84 that plot across a wide ranging 
area of the scores plot, including areas of WWTP and poultry dominance.  Most importantly, two 
of these four samples (cow-pasture edge of field samples collected after the PI hearing) actually 
plot within Olsen’s ‘poultry-waste impact dominant’ area (see Figure 2-9).  As a result, we get a 
new argument in May 2008, as seen in the following three quotes: 

• “if cattle waste were a major impact on contamination in the IRW, a dominant signature 
should be observed in the PCA.”85  

• “These four samples have very different PC scores and no consistent relation or group is 
observed in the PCA.” 86 

• “If cattle contamination contributed significant impact to contamination in the IRW, a 
clear signature and associated group should be observed in the PCA and the four 
samples would be in a group.” 87 

Olsen’s May 2008 opinion has not changed, but the argument that gets him there has.  Olsen no 
longer expects cattle-impacted samples to be distinctly separated from poultry and/or WWTP-
impacted samples on a scores plot.  Instead he points to two samples that plot within the poultry-
impact area, another that plots within the WWTP impacted area, and a fourth that plots 
separately from both areas, and cites this range of variability as evidence that there is no 
dominant signature for cattle.  

As pointed out in Section 2.3, this argument completely ignores a major contradiction to Olsen’s 
PCA interpretation.  All “four samples documented with cattle contamination”88 exhibit PC1 
scores greater than 1.3.  Olsen’s report never acknowledges this.  Nor did he acknowledge that 
the two cow pasture edge of field samples collected after the PI hearing (EOF-CP-1A and EOF-
CP-1B) actually plot within his poultry- dominant area.  

Olsen also concealed another interesting bit of information that contradicts his argument.  
Olsen’s Figure 6.11-25 (SW22 scores plot reproduced here as Figure 2-9) shows cattle-impacted 
sample SPR-26 plotting as a single sample.  With respect to that sample, Olsen wrote that “one 
of the spring samples (SPR-26) plots within the WWTP impact area.”89 There are actually two 
SPR-26 samples in SW22.  Only one of these plots within Olsen’s WWTP impact area.  The 
other plots within Olsen’s poultry-waste dominant impact group (PC1>1.3, PC2<4.7: see Figure 
3-7 below).  Olsen concealed this by taking the average of the two SPR-26 scores, and plotted 
the average on his Figure 6.11-25.  Had Olsen not taken the average, his cattle impact argument 
would appear even weaker, because three of five “samples documented with cattle 
contamination”90 would have plotted within an area of the scores plot that he interpreted as 
predominantly impacted by poultry.  This graphical slight-of-hand obscures the fact that his 
“unique poultry waste signature” is not that unique.   
                                                 
84 Olsen (2008a). p. 6-62 (line 5). 
85 Olsen (2008a). p. 6-61 (last line) through p. 6-62 (2nd line). (emphasis added).  
86 Olsen (2008a). p. 6-62 (lines 13-14).   
87 Olsen (2008a). p. 6-62 (lines 14-17).   
88 Olsen (2008a). p. 6-62. Lines 4-6. 
89 Olsen (2008a). p. 6-62. 1st paragraph. 
90 Olsen (2008a). p. 6-62. Lines 4-6. 
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Figure 3-7.  SW22 scores plot with cattle impacted edge-of-field (CP) and cattle impacted spring (SPR) 

samples highlighted. 

 

Moving beyond this bit of deception, let’s explore the logic Olsen’s May 2008 cattle-impact 
argument in more detail.  The argument is based on Olsen’s premise that if cattle had a major 
impact, we would expect to see known cattle-impacted samples plotting as a single, clear and 
distinct group.  According to Olsen, the fact that they do not (i.e. they plot across a wide ranging 
area of the scores plot) constitutes evidence that cattle-waste is not a major contributor.  What if 
another group of samples, related to another suspected source, exhibited a similar wide range of 
variability?  If we follow Olsen’s logic, we should similarly conclude that it is not a “dominant 
signature.”   With the exception of the two cow-pasture edge-of-field samples, Olsen claims that 
all other edge-of-field (EOF) samples reflect primarily poultry litter impacts.91  SW3 included 63 
EOF samples.  These 63 samples (and the 2 EOF-CP samples) are highlighted on the SW3 scores 
plot in Figure 3-8.   

                                                 
91 Olsen Deposition. pp. 51-52. 
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Figure 3-8.  SW3 scores plot with EOF-CP and other EOF (presumed poultry) samples highlighted.   

Note that the edge-of-field samples that Olsen presumes are poultry-impacted do not exhibit a 
“clear signature and associated group.” They have very different PC scores and no consistent 
relation or group is observed.  This is exactly what Olsen described for the four cattle impacted 
samples in SW2292 and was the rationale for dismissing cattle as a contributor to the IRW.  The 
range of variability of the 63 presumed poultry-impacted EOF samples spans almost the entire 
range of the scores plot.    Along the PC1 axis EOF scores range from very near Olsen’s 1.3 
poultry-impact threshold up to his maximum PC1 score of 8.1.  Along the PC2 axis the EOF 
scores span the entire range from the minimum to maximum.  Ten EOF samples actually exceed 
Olsen’s “WWTP dominant impact” threshold of 4.7.   Olsen’s May 2008 cattle impact argument 
is poorly reasoned.  In developing it, he relies on a conveniently ambiguous definition of 
“dominant signature.” His logic is flawed because when you turn the same method to suspected 
poultry-impacted edge of field samples (the source that he claims is the dominant contributor to 
IRW surface waters) we see a similar range of variability.  If you buy the premise of Olsen’s 
May 14 cattle argument (i.e. what he would expect to see if cattle manure impacts were 
significant) the same logic should have led him to dismiss poultry as a significant source.    

 

                                                 
92 Olsen (2008a). p. 6-62 (lines 13-17).   
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 3.3.1.3 September 2008: The Cattle Argument Provided in Deposition Testimony. 
Between Olsen’s May 2008 report and his September 2008 deposition testimony, Olsen’s cattle 
argument changed yet again.  In May, the two EOF-CP samples (EOF-CP-1A and EOF-CP-1B 
collected on the property of Ed Fite) were characterized by Olsen as “samples documented with 
cattle contamination.”93 In his September testimony, Olsen acknowledged that they exhibited 
PC1 scores greater than 1.394 and backed off of his position that they represent cattle-impact.  He 
opined instead that they represent poultry-impact.95  But he also confirmed that that (1) these 
samples were collected with the intent of capturing runoff representative of a pasture where 
cattle had been grazed,96 (2) he had no evidence that poultry litter was ever applied on the 
property where the EOF-CP samples were collected,97  and (3) his opinion that EOF-CP samples 
are poultry-impacted is speculation.98 In deposition, Olsen offered caveats regarding the 
representativeness of the EOF-CP samples,99 advised caution in how those data should be 
considered,100 but conceded that his May 14 report included no such cautions.101 

There is no evidence to support Olsen’s speculation that the cattle edge-of-field samples are 
impacted by poultry.102  The CP-EOF samples were collected on March 31, 2008 on the property 
of Ed Fite.  Field notes taken at the time of their collection state: “This field has never been 
applied with poultry waste.”103  In addition, when you look at these data in context of Olsen’s 
spatial analysis (in particular his poultry-house density data) it does not support Olsen’s 
speculation (Figure 3-9).  These samples were collected in an area of low poultry house density.   

Olsen’s most recent cattle argument is not only based on speculation, it is contradicted by the 
very data that he relied on elsewhere to justify his interpretations. 

                                                 
93 Olsen (2008a). p. 6-62. Lines 4-6. 
94 Olsen Deposition 9/11/08. pp. 369.  
95 Olsen Deposition. 9/10/08 p. 282. (Lines 15-24).  9/11/08. p. 388 (Lines 1-17). 
96 Olsen Deposition 9/10/08. pp. 52-53. 
97 Olsen Deposition. 9/10/08. p. 54. 
98 Olsen Deposition. 9/11/08. p. 388 (Lines 18-19). 
99 Olsen Deposition 9/10/08. pp. 52-53. 
100 Olsen Deposition. 9/10/08. p. 55 (Lines 15-25). 
101 Olsen Deposition. 9/10/08. p. 56 (Lines 5-8). 
102 Olsen Deposition. 9/11/08. p. 388 (Lines 18-19). 
103 See Field CDM/Lithochimea field notes from March 31, 2008 (STOK005374). 

Case 4:05-cv-00329-GKF-PJC     Document 2169-3 Filed in USDC ND/OK on 06/05/2009     Page 49 of 125



 

Johnson: Olsen Rebuttal Report 46

 
Figure 3-9.  Locations of EOF-CP samples plotted on Olsen’s poultry house density basemap.  
Note that the EOF-CP samples are located in area of zero poultry-house density, yet the PC1 scores of both samples 
both yielded PC1 scores greater than Olsen’s 1.3 poultry impact threshold.  
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3.3.2 Olsen was Aware of This “Problem” and Concealed It 

In his May 14 report, Olsen never acknowledged that his “samples documented with cattle 
contamination”104 all had PC1 scores > 1.3, or that there was overlap between EOF-CP and other 
EOF samples.  However, it is clear from emails produced by Olsen that his failure to disclose it 
was not because he missed these points, or failed to appreciate their significance.   Emails 
between Olsen and an associate that ran the statistical software for him, indicate that within the 
final two weeks before Olsen’s report was due, they were actively trying to find a PCA run that 
would yield a scores plot with distinct separation between poultry EOF and cow pasture EOF 
samples.  The emails below were exchanged on May 2, 2008, after nineteen PCA runs (out of 22 
total in his report) had been completed.   
Fri 5/2/2008 8:30 AM 
From: Richard Chappell 
To: Roger Olsen 
Subject: PCA run SW 19 posted 

Water_0502_SW_19 
Same as SW 18 but removed the two FAC samples - so it's just EOF and Manure Leachate. 
Fri 5/2/2008 9:54 AM 
From: Olsen, Roger 
To: Chappell, Richard 
Subject: Looked at runs - one more 

I looks at the runs - good confirming things. 
I think we should run an EOF only run - see if the EOF - CP will break out. Thanks. 
Fri 5/2/2008 11:06 AM 
From: Richard Chappell 
To: Roger Olsen 
Subject: RE: Looked at runs - one more 

Posted:  Water_0502_SW_20 
EOF only run, 26 variables, >=20 cutoff, total metals.  On R_PC_Plot the CD [sic] samples are indicated 
on the variomax plots (and a few of the no rotation plots) as yellow symbols - they don't seem to break 
out, although they are kind of toward the edge on alot of the plots.  I'm looking at the chemistry some 
more to see if there are any particular variables that differ from the rest of the EOF - if so, we may be able 
to break them out using a reduced set of variables. 
  
Have you received any further information about those samples? 

Recall that Olen’s February 2008 cattle-impact criterion was based on separation of presumed 
cattle impacted samples and poultry-impacted samples on a PCA scores plot (see Section 
3.3.1.1).  But the March 2008 cow-pasture edge-of-field samples (CP) did not support that 
criterion.  Those two samples plotted squarely within Olsen’s “poultry-waste dominant impact” 
area (see SW3 scores plot: Figure 2-12).  On May 2, after 19 PCA runs, Olsen was apparently 
still trying to find a way to “see if the EOF - CP will break out.” That is, he was trying to find a 
PCA run that supported his February PI testimony.  SW20 was run with that specific purpose. 

The SW20 varimax plots referred to in the 3rd email were not included in Olsen’s production, but 
the results spreadsheets for PCA run SW20 were.  It is a simple matter to make a varimax scores 
plot using those results (Figure 3-10 below).  On this plot, we see exactly what was reported to 
Olsen in the email above: there is no separation between EOF-CP and other EOF samples.   

                                                 
104 Olsen (2008a). p. 6-62. Lines 4-6. 
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Figure 3-10.  SW20 Scores Plot (Varimax Rotation).  
Data taken from Spreadsheet (‘Results_Water_0502_SW_20.xls’) produced as part of Olsen considered materials.  
Note lack of separation between EOF CP and other edge-of-field samples. 
 
In the same email where Olsen’s associate (Chappell) reported the failure to get separation, he 
reported that “I'm looking at the chemistry some more to see if there are any particular variables 
that differ from the rest of the EOF - if so, we may be able to break them out using a reduced set 
of variables.”  Two and a half hours later, the results of that analysis were back, in the form of 
PCA Run SW21. 
Fri 5/2/2008 1:37 PM 
From: Richard Chappell 
To: Roger Olsen 
Subject: RE: Looked at runs - one more 
Attachments: Comparison_EOF_CP_Chemistry_26.xls; R_PC_Plot_Water_0502_SW_21.zip 

I compared the 26 variables (see attached) then picked the 14 variables that were most different between 
the two CP samples and the EOF and ran a PCA.  It put them more on the edge, generally, but still no 
distinct separation (see attached). 

In this attempt to get “distinct separation” Chappell first conducted a comparison of the 26 
variables in Olsen’s main PCA water run (SW3).  Based on that analysis, he identified 14 that he 
thought gave him the best chance of distinguishing between EOF-CP and other EOF samples. He 
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then ran a PCA using only those variables.  Despite cherry-picking the variables with the specific 
objective of getting separation between EOF-CP and other EOF samples, this attempt failed: 
“still no distinct separation (see attached).”  This time, the score plots were included as an 
attachment to the email (Figure 3-11).     
   

SW21 PC1 vs PC2 (No Rotation) 

 
Figure 3-11.  SW21 Scores Plot (No Rotation).  
Plot included in spreadsheet  (‘R_PC_Plot_Water_0502_SW_21.xls’) produced as part of Olsen considered 
materials, as attachment to 5/2/08 email from Chappell to Olsen.  The yellow circles are the EOF-CP samples.  The 
black dots are all other EOF samples in SW21. Note: no separation between EOF CP and other edge-of-field 
samples. 

These emails make it clear that that as of Friday May 2, 2008, Olsen was holding out hope that 
the new cow-pasture edge-of-field data would support his concept of a distinct cattle signature, 
as per his PI testimony.  He was looking for distinct separation between presumed cattle and 
poultry impacted samples.   But PCA runs that included the new CP samples showed no such 
separation.  He ran SW20 and SW21 with a specific objective: “see if the EOF-CP will break 
out.”  They did not break out, and it was at this point that his cattle impact criterion changed.  
Two days after SW21 was run, (Sunday May 4 – ten days before the final report was due) Olsen 
ran one final PCA (SW22)105 which became the basis of the cattle impact argument that appears 
his report (pages 6-61 and 6-62) and which is reviewed in Sections 2.3.3 and 3.3.1.3 of this 
                                                 
105 See Olsen/Chappell email exchange. 5/4/08. 3:47 pm and 4:47 pm. 
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report.  With this final PCA run, the criterion for distinguishing between cattle and poultry was 
no longer distinct separation, but rather the variability of scores.     

Little of this is ever discussed in Olsen’s report.  But a detailed review of these PCA runs, the 
timing of emails that describe their purpose, and interpretation in context of the spatial analysis, 
indicate that he was well aware of evidence that contradicted his theory, and was less than 
forthcoming in his report.  

• Olsen did not acknowledge in his report that all four cattle-impacted samples yielded PC1 
scores above his unique poultry waste signature threshold.   

• The score plots presented in Olsen’s report from his primary PCA run (SW3) did not use 
a unique symbol for EOF-CP samples, so the reader cannot look at his figures and see 
that the two cow pasture edge-of-field samples plot within the boundaries of his “poultry 
waste dominant impact” area.   

• In his report, Olsen never discussed the rationale for, or results from SW20 and SW21.  
But these PCA runs were implemented with the specific objective of getting separation 
between presumed cattle and poultry-impacted samples.  They failed to meet that 
objective.   

• In section 2.3.3 I noted that it was curious that PCA run SW22 was not included in 
Olsen’s list of four “major PCA runs” 106 selected as such because they were “the most 
important to the investigation or project objectives.”107 This now makes a bit more sense.  
PCA run SW22 (and the associated cattle-impact argument in Olsen’s report) was an 
afterthought.  SW22 was run more than 2 months after Olsen’s PI testimony, just 10 days 
before his report’s due-date, and done so only when repeated PCA runs failed to support 
Olsen’s previous argument, which had been based on distinct separation.   

• Olsen’s red-dot green-dot map ultimately shows the cattle edge-of-field samples as 
poultry impacted.  But his spatial analysis does not support such an interpretation.  The 
spatial analysis was supposedly an independent line of evidence in support of his 
interpretation.108 In reporting the results of that effort, he presented just five examples, all 
of which were consistent with his interpretation.109   

• The email exchanges quoted above indicates that these were not errors of omission.  
Olsen was fully aware of this contradictory evidence and its significance, and did not 
disclose it in his report. 

In deposition, four months after his report, Olsen was confronted with these conflicting lines of 
evidence.  Olsen now claims the EOF-CP samples (previously described “samples documented 
with cattle contamination”110) must considered with caution, and that they represent poultry 
impact, not cattle.  Given three versions of Olsen’s argument now, it is curious that his opinion 
never changes, only the argument necessary to get him there.   

                                                 
106 Olsen (2008a).  p. 6-51. Last paragraph. 
107 Olsen (2008a).  p. 6-50. 3rd  paragraph. 
108 Olsen (2008a). p. 6-34 (Steps 12 and 13 bullets); p. 6-57 (4th paragraph); p. 6-59 (2nd paragraph). P. 6-60 (1st paragraph). 

Olsen Deposition testimony (9/10/08; p. 220). 
109 Olsen (2008a).  p. 6-59 to 6-60 
110 Olsen (2008a). p. 6-62 (line 5). 
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 3.4 High Flow Sample Stations 
As discussed in Section 2.3.1, Olsen’s spatial analysis discussion relied in large part on results 
from two high-flow sampling stations in areas of low poultry house density: HFS28A and 
HFS30.  I pointed out that these two stations represent only a fraction of the high-flow samples 
included in Olsen’s PCA.  Pointing to Figure 2-5, I noted that there were numerous instances of 
red-dots (supposedly poultry impacted) plotting in green sub-basins (areas of low poultry house 
density), and that this suggests that Olsen’s spatial analysis is not as consistent with his poultry-
impact classification as he might have us believe.  In this section, I will present a more detailed 
review of some of the high-flow-station data that contradict Olsen’s interpretation. 

Figure 3-12 shows the location of high flow sample station HFS-05.  Twenty high flow samples 
were collected from this station, between June 2005 and June 2006.   For Olsen’s SW3 PCA run, 
The PC1 scores for all 20 samples exceeded 1.3.  The average PC1 score was 1.52, and the 
maximum was 2.22.  But this map shows that it is located at or near the downstream boundary of 
a zero poultry house density sub-basin.  This sub-basin is located just west of Fayetteville, 
Arkansas (the largest city in the IRW – see inset map).  To the extent that Olsen’s PC1 scores 
reflect contamination, it would certainly seem that urban runoff would be a more plausible 
explanation for the water quality at the HFS-05 sample station.   

 
Figure 3-12.  Location of  HFS-05 plotted over Olsen poultry house density data and greater Fayetteville 

Area (gray shaded area).  

A second example is HFS-22 near Lincoln, Arkansas.  Figure 3-13 shows its location at the 
downstream edge of a zero poultry-house density area.  This is the same area where Olsen 
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collected his Lincoln WWTP sample (Section 3.2) and that sample is shown on Figure 3-13 
along with HFS-22.  Fifteen high-flow samples were collected at HFS-22 between May 2005 and 
May 2006.  All but one yielded PC1 scores greater than 1.3 (average=1.64 | range:  1.24 to 2.00).  
Like Olsen’s “Lincoln WWTP” sample, HFS-22 is located downstream of both the city of 
Lincoln and its sewage treatment plant (POTW outfall - Figure 3-13).    

 
Figure 3-13.  Locations of HFS-22 and Lincoln WWTP samples, plotted over Olsen poultry-house 

density data.  
PC1 score shown for HFS-22 is the average of 15 high-flow samples collected at this location. 

To the extent that Olsen’s PC1 scores reflect contamination, his spatial analysis suggests that 
urban runoff and/or WWTP impacts are more plausible explanations.  Elsewhere in his report, 
Olsen acknowledges this.   In his discussion of sources of phosphorus in context of poultry house 
density, Olsen acknowledged that HFS-22 was sampled to provide information on the mass loads 
contributed by this type of WWTP facility.  In the same discussion, he indicated that HFS-22 
was excluded from the phosphorus statistical analysis because the stream water quality at this 
site is dominated by effluent from the Lincoln wastewater treatment plant.111 These cautions and 
caveats were apparently not taken into consideration in the spatial analysis performed in support 
                                                 
111 Olsen (2008a). p. 6-29. Final paragraph. 
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of Olsen’s PCA interpretation.  While acknowledging that this sample is dominated by 
wastewater treatment plant effluent, and aware that it is located in a low poultry-house density 
area, it did not influence his choice of a 1.3 PC1 poultry-impact threshold.  This illustrates both 
the internal inconsistency in Olsen’s report, and the arbitrary nature of his ‘unique poultry waste 
signature’ criterion. 
The third and fourth examples (HFS-04 and RS-336) are in or downstream of Siloam Springs, 
Arkansas (Figure 3-14).  Both are located on Sager Creek, and both are located within a sub-
basin that Olsen’s data shows as having zero poultry house density.   

 
Figure 3-14.  Siloam Springs high-flow samples plotted over poultry-house density.  
Also shown: (1) Location of Siloam Springs WWTP; (2) Location of Siloam Springs Country Club (golf course); (3) 
city limits of Siloam Spring, Arkansas and West Siloam Springs, Oklahoma, based on ESRI (2006) data. 

Nineteen samples were collected from high-flow sample station HFS-04 between May 2005 and 
May 2006.  All 19 yielded PC1 scores greater than 1.3 (average=1.62 | range is 1.48 to 1.73).  
Like the Lincoln sample, HFS-04 is located downstream of both the city of Siloam Springs and 
its waste-water treatment plant (Figure 3-14).  Once again, to the extent that Olsen’s PC1 scores 
reflect contamination, his spatial analysis suggests that urban runoff and/or WWTP impacts are 
more plausible explanations.  Once again, Olsen acknowledged this elsewhere in his report.  In 
the same discussion of HFS-22 (in context of phosphorus concentrations and poultry house 
density, as discussed above) Olsen indicated that HFS-04 was excluded from the phosphorus 
statistical analysis because the stream water quality at this site is “dominated by effluent from the 
City of Siloam Springs wastewater treatment plant.”112 This was apparently not taken into 
                                                 
112 Olsen (2008a). p. 6-29. Final paragraph. 
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account in context of Olsen’s PCA.  Rather, HFS-04 was classified by Olsen as poultry-impacted 
and plotted as a red-dot on his red-dot / green-dot map.  This contradiction, as revealed by this 
spatial analysis did not influence his choice of a 1.3 PC1 poultry-impact threshold.  Once again, 
this illustrates both the internal inconsistency in Olsen’s report, and the arbitrary nature of his 
‘unique poultry waste signature’ criterion.  
The fourth example is shown on this same map.  RS-336 is located within the city limits of 
Siloam Springs, within the same zero poultry house density sub-basin as HFS-04.  Only one 
high-flow sample was collected at RS-336 (5/10/2007), but it yielded a PC1 score of 1.4.  This 
sample-station is located immediately downstream of a golf-course (Siloam Springs Country 
Club).  To the extent that Olsen’s PC1 scores reflect contamination, it would seem that urban 
runoff and/or fertilizer application would be a more plausible explanation.   

In summary, Olsen’s discussion of his spatial analysis cites 15 high-flow samples collected from 
2 sample stations located in areas of low poultry house density.  Those samples yielded average 
PC1 scores below or near or his 1.3 threshold, and that was cited by Olsen as a line of evidence 
in support of his purported unique poultry waste signature criterion.  In this section of my report, 
I have presented data from 45 high flow samples, collected at 4 locations.  Using the same spatial 
analysis criteria as Olsen (locations with respect to urban areas, locations with respect to 
WWTPs, and the Olsen/Fisher poultry house density data) it is clear that his 1.3 criteria is not 
supported by his own data.   

 

 

 

3.5 Base Flow Sample Stations 
If we look at base-flow samples in relation to Olsen’s poultry house density data we see a similar 
pattern, or lack thereof.  Figure 3-15 shows numerous red-dots plotting in green sub-basins.   
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Figure 3-15.  Base-flow sample PC1 scores map, plotted over poultry house density data. 

However, if we plot these same base-flow results over a map showing human population centers, 
we see a more consistent pattern (Figure 3-16).  Many of the red-dots that are anomalous with 
respect to poultry-house density data (Figure 3-15) are located in and immediately downstream 
of cities, towns, and/or WWTPs.  This is particularly evident in streams that drain the greater 
Fayetteville/Bentonville urban areas.  But it is also apparent in base-flow samples downstream of 
Siloam Springs, Tahlequah,113 Stillwell, Watts, Prairie Grove, Westville, and Lincoln.  

                                                 
113  Note that the Tahlequah base-flow samples shown on Figure 3-16 are the same samples that Olsen changed on his red-dot / 

green-dot map (Section 3.1).  The coincidence of red-dots and urban areas for base-flow samples provides a plausible 
explanation for why the Tahlequah data did not fit Olsen’s theory. 
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Figure 3-16.  Base-flow PC1 scores map, plotted with respect to urban areas and WWTP Locations 
Olsen’s PC1 threshold plotted over basemap showing areas of high human population density and WWTP locations 
WWTP locations from Jarman, personal communication.  Gray shaded areas indicate regions of human population 
density > 400 people/mi2, based on ESRI (2006) data.   

This map and its comparison to Figure 3-15 (same PCA results plotted over poultry-house 
density data) makes it clear that Olsen’s 1.3 PC1 criterion for a ‘unique poultry-specific 
biological and chemical signature’ is neither unique nor poultry-specific.  Whatever is driving 
PC1 (see alternative interpretation: Section 4.2) it is in large part coming from areas of high 
human population, in absence of poultry.     
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4.0 Alternative Interpretation of Olsen’s PCA 
As discussed in Sections 2.0 and 3.0, there are major problems and inconsistencies with Olsen’s 
PCA.  The data simply do not support his interpretations.  In this section, I present alternative 
interpretations/explanations of Olsen’s PCA.   

4.1 An  Alternative PC1 Poultry-Impact Threshold  
It is my opinion that Olsen’s 1.3 PC1 criterion is arbitrary, and that there is no PC1 threshold that 
can be applied as an indicator of poultry-impact because PC1 does not equal poultry.  But in the 
end, making such an argument is hardly necessary.   Taking Olsen’s interpretation at face value, 
a critical review shows contradictions at every turn.  SW3 included a number of samples 
collected to characterize sources other than poultry (cattle edge-of-field; WWTP and Tahlequah), 
and every single one of them yielded PC1 scores greater than 1.3 (Section 3.1, 3.2 and 3.3).  In 
addition there were many high-flow and base-flow stream samples that are contradicted by 
Olsen’s spatial analysis (Sections 3.4 and 3.5). 

But what would happen if Olsen had tried to preserve his opinion that PC1 equals ‘poultry waste 
impact’, and just changed the PC1 threshold to a value better supported by the spatial analysis.  
The first step would be to define a more reasonable threshold.  If we were to just move the PC1 
threshold up to a value greater than that observed for the samples that contradict Olsen’s opinion, 
it would be both reasonable and ‘conservative.’114 What’s more, Olsen would not have had to 
veto PCA results or speculate about potential poultry litter application in cow-pastures or 
wastewater treatment plants.  This would alleviate many problems for Olsen.   

The maximum PC1 score for cattle edge-of-field; WWTP and Tahlequah samples was 2.11 
(sample EOF-CP1B). A PC1 threshold of 2.12 would be conservative in that it would exceed the 
PC1 scores for all of these samples (Figure 4-1).   

                                                 
114 Olsen repeatedly claims to have been ‘conservative’ in establishing his 1.3 threshold.  See Olsen 2008a: p. 6-60 (1st 

paragraph); Olsen Deposition, 9/10/08 pp. 218 (line 14) to 219 (line 6); Olsen Deposition, 9/10/08 p. 222 (Lines 3-12); Olsen 
Deposition, 9/11/08 pp. 330 (line 24) to -332 (line 5); Olsen Deposition, 9/11/08 pp. 472 (line 3-17). Olsen Deposition, 
9/11/08 pp. 484 (line 5-8). Olsen Deposition, 9/11/08 pp. 485 (line 8-24).  
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Figure 4-1.  SW3 scores plot with known, non-poultry impacted samples highlighted.  
 

Given this new threshold, Olsen’s red-dot / green-dot map would be as shown on Figure 4-2.  
Looking at these results in context of a spatial analysis, this would seem to solve a lot of 
problems for Olsen.  The three reference stream locations and two high flow locations cited in 
his spatial analysis discussion115 are well below 2.12, so this more conservative PC1 threshold 
still supports the argument that appears in his report.   The 2.12 threshold is in fact better, 
because Olsen doesn’t have to round HFS-30 PC1 score down from 1.3022 to 1.3 to support his 
argument (see Figure 2-5).    All Tahlequah scores are below the 2.12 threshold, so there is no 
need to make the subjective decision to veto his PCA results, and manually change the color of 
the Tahlequah sample from red-dots to green-dots.   All WWTP effluent samples exhibit PC1 
scores <2.12, so there is no need to veto those results either.  The two EOF-CP samples are 
below a 2.12 threshold, so there is no need to speculate about poultry impact in cow pastures that 
reportedly have never had poultry litter applied to them.  In addition, we no longer see as many 
red-dots plotted for samples down-stream of urban areas with low poultry-house density 
(Lincoln, Westville, Rogers, Fayetteville).  A 2.12 PC1 threshold would to make for a simpler, 
more lucid story, without Olsen having to abandon his theory that PC1 equals poultry.   
 

                                                 
115 Olsen (2008a). p. 6-59 to 6-60. 

Case 4:05-cv-00329-GKF-PJC     Document 2169-3 Filed in USDC ND/OK on 06/05/2009     Page 62 of 125



 

Johnson: Olsen Rebuttal Report 59

 
Figure 4-2.  Olsen’s red-dot / green-dot map using a PC1 threshold of 2.2.  

However, this threshold yields a very different estimate of water samples supposedly impacted 
by poultry. Seventy-nine percent (79%) of IRW sample stations would now be classified by as 
unimpacted by poultry, and plot as green dots (Figure 4-2).  Of that 21%, only one sample (SN-
SBC2) is a river, stream or lake water sample.  In other words, all but one of the red-dots on 
Figure 4-2 are edge-of-field samples. What’s more, even that single stream sample with a PC1 
score greater than 2.12 does not support the theory of a poultry source.  A map showing the 
location of SN-SBC2 is provided as Figure 4-3.  It is located in an area of low poultry house 
density, less than 500 meters downstream of the Westville WWTP.    
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Figure 4-3.  Location of SN-SBC2, in relation to poultry house density data and Westville WWTP.   

This exercise shows that even if you overlook issues of faulty assumption and errors in 
implementation, accept at face-value Olsen’s PCA interpretation that PC-1 equals poultry, and 
try to salvage the theory with a more reasonable threshold, the inevitable conclusion is still that 
Olsen’s PCA does not support an opinion that “poultry waste is by far the dominant 
contamination source in the IRW.”116 Olsen could not propose a more realistic PC1 threshold 
without simultaneously concluding minimal poultry impact to surface waters of the IRW.   

 

4.2 PCA Interpretation In Context of Concentration and Differential Partitioning.    

In Section A2.2 of Appendix A, I pointed out that Olsen did not do a transformation to normalize 
out the effect of widely differing concentrations.  I also pointed out that, as a result, I would 
expect that the total concentration of samples would exert tremendous influence on where 
samples plotted on a scores plot.  This turns out to be the case.  To show this, I have re-plotted 
Olsen’s SW3 scores plot, with colors assigned to symbols as a function of the sum concentration 
for all chemical variables (Figure 4-4).  Bacteria was omitted from this sum for several reasons: 
                                                 
116 Olsen (2008a). p. 1-2.  Bullet 3. 
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(1) bacteria were reported in different units (org/100ml rather than mg/L); (2) bacteria data were 
missing from more than a quarter of the samples in SW3 (Appendix A: Section A2.1); and (3) 
bacteria has essentially no predictive ability in this PCA model whatsoever (See Appendix A, 
Section A2.4 & Figure A-5). 

 
Figure 4-4.  SW3 scores plot with symbol colors plotted as a function of total concentration.   

 

The pattern here is exactly what we would expect from a PCA where no sample-normalization 
was done.  Sample scores are strongly controlled by total concentration.  Low-concentration 
samples (blue squares) plot at the bottom left corner of the data cloud (the corner of the “L”).  As 
you move away from that corner of the scores plot, samples increase in total concentration, 
transitioning from blue to hotter colors: yellow, orange, red, and then brown.  In general, a PCA 
scores plot that shows a “V” or “L” shaped data cloud is a tell-tale sign that the PCA did not 
include a transformation to normalize out concentration. 

It is also clear on this plot that the greatest density of samples is along one of two trends: (1) 
along the bottom of the L; and (2) along the left side of the L.  These two trends are labeled on 
Figure 4-5, below.  A few samples do not plot within one of these two trends (e.g. samples 
plotting to the extreme upper-right), but these exceptions are primarily edge-of-field samples.  
The vast majority of IRW stream and lake surface-water samples plot within one of these two 
trends. 
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Figure 4-5.  SW3 scores plot showing samples along bottom trend (red) and left trend (blue).   
Numbered samples are shown as bar-graphs on Figures 4-6 and 4-9. 

Note on Figure 4-5 that there are numbered samples along each of these two trends.  Samples 1 
through 5 are shown along the bottom trend as red squares.  Samples 6 through 10 are shown 
along the left trend as blue squares.  Bar-graphs for the five samples along the bottom trend (red) 
are shown on Figure 4-6. Several observations can be made with regard to these five samples.  
First, note the bacteria data on the far right.  All bacteria data were missing from the two lowest 
concentration samples (samples 1 and 2).  The gray bars indicate missing data, and the height of 
the bars represents the mean (average) concentrations that were substituted for missing data.  
There is wide variation in bacteria concentrations and no discernable trend or pattern is observed 
as one moves to the right along the bottom sample trend. 

Note also, that the three variables highlighted by pastel red shading: total phosphorus (PT), total 
iron (FET) and total aluminum (ALT) increase in concentration as you move to the right along the 
bottom trend.  Iron and aluminum are not as soluble as ions such as sodium and chloride.  As 
such, Fe and Al are generally associated with suspended sediment fraction of natural waters.  
Sorption of phosphorous to suspended particulate matter is common, with phosphate ions taken 
up from water by alumina, clay particles, and freshly precipitated iron and aluminum hydroxides 
(Stumm and Morgan, 1970).  As such, particulate-bound phosphorus constitutes much of the 
phosphorus in runoff from cultivated land (Sharpley and Smith, 1990).   As a result, total 
phosphorous in natural waters has been observed to correlate with total suspended solids (TSS - 
Sullivan, et. al., 2005).     
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Figure 4-6.  Bar graphs for the five bottom-trend samples indicated on Figure 4-5.   

These observations suggests that the ‘bottom trend’ on Olsen’s SW3 scores plot is associated 
with TSS, and that total phosphorous increases along this trend as a function of its association 
with suspended particulate matter.    

But, the bar-graph above represents only five samples.  If this interpretation is true, we should 
see increasing Fe and Al concentrations in all samples along this trend.  Figure 4-7 shows 
Olsen’s SW3 scores plot, with the symbol-color keyed to the concentration of total iron plus total 
aluminum.  The trend suggested by the five samples discussed above, is observed for the data set 
as a whole.  The concentration of total iron + total aluminum increases in samples along the 
bottom trend of Olsen’s SW3 scores plot.   
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Figure 4-7.  Olsen’s SW3 scores plot, with symbol colors reflecting total Iron + total Aluminum.   

If the sum of total iron and total aluminum reflects suspended sediment, then plotting PCA 
scores as a function of total suspended solids (TSS) should show a similar pattern.  TSS was not 
included as a variable in Olsen’s PCA, but it was provided in Olsen’s database.117  Figure 4-8 
shows Olsen’s SW3 scores plot, with the data plotted as a function of reported TSS 
concentrations.  We see the same pattern that we saw for iron + aluminum.   As you move from 
left to right across the bottom trend of Olsen’s SW3 scores plot, TSS increases in concentration.   

Clearly one of the major controls on Olsen’s SW3 PCA run is the degree to which a water 
sample has high concentrations of suspended sediment.  Samples that plot along this trend do so 
as a function of turbidity and suspended sediment, not poultry impact. In addition, consider that 
the muddier a water sample is, the higher the suspended sediment concentration will be.  To the 
extent that edge-of-field samples exhibit high PC1 scores, it reflects preferential sampling of 
muddy water in EOF samples.  This explains why Olsen could never get the cattle edge-of-field 
samples to “break out” from other edge of field samples: EOF samples would be expected to 
have high TSS, regardless of whether they are collected from a cow pasture, a road-side ditch, or 
a mud-puddle near a field where poultry litter might have been applied.   

                                                 
117 TSS data are contained in the spreadsheet “PCA_Main_Database_Water.xls” within the worksheet ‘Water (Out)’. TSS was 

included as an analyte for CDM/Lithochimia-collected samples, but not for USGS samples.   
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Figure 4-8.  Olsen’s SW3 scores plot, with symbol colors reflecting Total Suspended Solids (TSS).   

None of this should come as a surprise to a geochemist, and it should not surprise Olsen.  The 
following testimony came in context of a line of questioning related to the potential effects of 
stream-bank erosion (i.e. an input of suspended sediments) on Olsen’s analysis:   

Q What would you have expected to have seen in terms of a different composition?   
A You know, stream banks would have had more iron, more aluminum, you know, generally more 
highly elements that are in the sediments.   
Q Okay.   
A More silica. You know, we didn't analyze for silica. So more iron, more aluminum. We would 
have seen those types of things.  
Q Did you evaluate those samples for iron and aluminum concentrations to determine whether 
stream impact -- I'm sorry, stream bank erosion may be having an effect on those samples?   
A That was all in the principal component analysis, so it would have related to a change in 
chemical composition that in my opinion you would have been able to see if it was major.  118 

In this quote, Olsen acknowledges that iron and aluminum are preferentially associated with 
suspended sediment in water.  He says that if suspended sediment were a controlling factor, we 
would have seen it in his PCA results.  We do see it in his PCA.  Olsen just failed to recognize it.  
Clearly, suspended sediment, iron and aluminum exert a strong control on total phosphorus, and 
in turn on where samples plot on Olsen’s SW3 scores plot.   

                                                 
118 Olsen Deposition. 9/10/08. p. 77-78. 
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Going through the same process for the left trend (blue squares – samples 6 through 10 on Figure 
4-5), the bar-graphs for these samples are shown on Figure 4-9.  Again, the bacteria data exhibit 
a wide range of variability, with the highest values observed in otherwise low concentration 
samples, where missing data has been substituted.     

 
Figure 4-9.  Bar graphs for the five left-trend samples indicated on Figure 4-5.   

Variables shown with blue shading (total sodium (NAT), total potassium (KT), chloride (CL) and 
sulfate (SO4)) all increase in concentration along this trend.  These analytes are more soluble in 
water (Freeze and Cherry, 1979) so in contrast to iron and aluminum, they prefer to be in 
dissolved-phase rather than adsorbed to particulates.  Once again, this should come as no 
surprise, and Olsen testified that for highly soluble analytes like sodium and potassium, the 
concentration reported as “total” should roughly equal their reported “dissolved” concentrations, 
because they are typically found entirely in solution.119  

Note that all of these samples have low iron, aluminum and TSS (Figure 4-5 and 4-8).  Note also 
that the two soluble forms of phosphorus (PTD and P_SOL_REAC) are close to equal in each 
sample and are also close to the reported concentrations of total phosphorus.  This suggests that 
the general increase in P concentrations in these samples (sample 8 being the exception) reflects 
dissolved phase phosphorus, rather than particle-bound phosphorus.   

As for the bottom trend, I picked just five samples to show on Figure 4-9.  Figure 4-10 shows 
Olsen’s SW3 scores plot, with the symbol color keyed to the concentration of NAT + KT + Cl + 
SO4.  The trend observed in the bar-graphs above, is evident for the data set as a whole.  The 
concentration of highly soluble analytes increases as you move up along the left trend of Olsen’s 
SW3 scores plot.  Clearly, the primary controls on Olsen’s PCA are related to elementary 
geochemistry: whether an analyte is preferentially associated with the dissolved phase or 
particulate/suspended solids phase.  To the extent Olsen’s PCA model reflects real-world 
geochemistry, it is controlled by solution/adsorption processes, not sources.   
                                                 
119 Olsen (2008a). p. 3-18. 4th paragraph.  Olsen Deposition. 9/10/08. p. 116-117. 
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Figure 4-10.  SW3 scores plot, with symbol colors reflecting concentration of highly soluble analytes (K, 

Na, Cl and SO4).   

Given this alternative interpretation of Olsen’s PCA, let’s revisit his interpretation and see how 
they compare.  Olsen claimed that PC1 equals poultry, and that 1.3 is an appropriate threshold 
for delineating poultry-impacted versus non-impacted.  But that theory had major problems.  To 
explain away the contradictions, Olsen had to do one of three things: (1) ignore the 
contradictions (e.g. base-flow and high-flow samples that plot as red-dots in areas of zero poultry 
house density); (2) veto his own rule (e.g. Tahlequah, WWTP effluents) or (3) speculate about 
poultry impact in areas where there is no evidence of the application of poultry litter (e.g. cow-
pasture edge-of-field samples).  A simpler explanation is that PC1 does not equal poultry.  As 
samples increase in PC1 scores, they do so as a function of suspended particulate matter.  
Regardless of the source (cattle, WWTP, poultry, soil erosion, contribution from urban sources 
like Tahlequah), total phosphorus and PC1 scores increase as a function of suspended sediment.   

Olsen interpreted PC2 as WWTP effluent.  PC2 does not equal anything, but the samples along 
the left trend (roughly parallel to PC2) generally increase in concentrations of water-soluble 
cations and anions (Na, K, Cl, and SO4) as PC2 scores increase.  As such, samples that plot 
within Olsen’s “WWTP-dominant impact” area do so because they had high reported 
concentrations of soluble ions.  Regardless of source, water samples with higher concentrations 
of dissolved salts will plot along this trend with high PC2 scores.  This simple explanation 
alleviates the need to explain away anomalies like the majority of groundwater well samples in 
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SW17 exhibiting the “WWTP fingerprint” even though those wells are located nowhere near a 
waste-water treatment plant (See Section 2.3.2).   

Once again, none of this should come as a surprise to Olsen.  He is well aware that the samples 
he presumes to be ‘poultry impacted’ have high TSS concentrations, and that samples presumed 
to be ‘WWTP impacted” have low TSS concentrations.  In his report he stated that “total 
suspended solids were found to be 10 to 100 times greater in the poultry EOF than in the 
WWTP.”120  Olsen claims to have used PCA to discover unique chemical/biological signatures 
related to poultry and WWTP effluent.  What he has actually discovered is nothing more 
profound than the distinction between muddy water and salty water.    

                                                 
120 Olesen (2008a). p. 6-7 (2nd paragraph – lines 8-10) and 6-8 (1st paragraph – lines 9-11). 
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5.0 Summary and Conclusions 
In the introduction of this report, I pointed out that Olsen cited a number of papers in the 
literature where PCA had been applied to environmental chemical data, but that the existence of 
such literature does not guarantee that its application to IRW will yield contaminant source 
signatures. Nor does it exonerate one from errors of implementation or misinterpretation of 
results.  Nor does it justify concealing data/evidence that contradicted one’s opinion.  Olsen did 
all of this, and when one carefully dissects his analysis, it is clear that his PCA does not identify 
sources of contamination in the IRW.   

PCA can be a useful tool in analysis of environmental chemical data, but there is no guarantee 
that the results will yield chemical fingerprints related to source.  Its success in this regard 
depends on the analyst having a good understanding and sensitivity to the chemical system under 
study, the mathematics of the method, and its assumptions.  There are numerous pitfalls for the 
unwary and inexperienced.  In Olsen’s application of PCA, he fell into a number of traps, many 
of which were identified in the literature, and cautioned against 20-30 years ago (e.g. reification 
of factors, interpretation of loading bar graphs as chemical compositions, and use of the percent-
variance criterion for determining the number of significant principal components).   Many of 
these pitfalls are errors of assumption.  But Olsen also made errors in mechanical 
implementation of PCA, such as failure to do a sample normalization transformation, and 
incorrect back-calculation of scores.   

Olsen also made an error in the basic philosophy of data analysis.  PCA is considered a statistical 
method.  But within statistics, there is a distinction between classical hypothesis testing methods 
and exploratory data analysis (EDA) methods.  PCA falls in the latter category.  In layman’s 
terms, exploratory data analysis is more like detective work than hypothesis testing.  One may 
reasonably carry a working hypothesis into an investigation, and Olsen clearly had his.121  But 
the analyst must allow himself to be surprised by the data, and must entertain alternative theories 
if and when the data reveal the unexpected.    Olsen did not do this.  When faced with new data 
and/or PCA results that contradicted his theory of a predominant poultry source, his opinions did 
not change.  Rather, the logic of his argument became more complicated (often to the point of 
sheer speculation) and/or new arguments were presented to fit the existing theory (e.g. cattle 
edge of field samples - Section 3.3).     In the end, Olsen tells us that samples with PC1 scores 
less than 1.3 might be impacted by poultry, and he concedes that there are samples with PC1 
scores greater than 1.3 are not impacted by poultry. He is left with a completely arbitrary 
poultry-impact threshold that can be vetoed when convenient. 

But dissenting lines of evidence were not just dismissed or explained away, they were concealed.  
Olsen relied on a spatial analysis where he compared principal component scores to poultry 
house density data.  He was clearly aware of contradictory results, but in a discussion of the 
spatial analysis, offered in support of his 1.3 PC1 threshold, he presented only a few examples 
that supported his theory.  Contradictory results are not evident on Olsen’s maps or score plots 
because of misleading annotation and/or use of data symbols that obscure the contradictions.  In 
Tahlequah, Olsen made the subjective decision to override the PCA results, and changed the 
color of the Tahlequah samples to fit his theory.  This was never disclosed in annotation of his 
map or in the text of his report.  The four known cattle impacted samples in Olsen’s analysis are 
classified as poultry impacted by his PCA (SW3 PC1 scores > 1.3) but the reader can’t tell that 

                                                 
121 From the time CDM began work on this project, the project has carried the acronym ‘OPL’ (Oklahoma Poultry Litigation), so 

it is clear what the initial working hypothesis was. 
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by looking at his score-plots, because Olsen used the same symbol to plot EOF-CP and all other 
edge-of-field samples.   Olsen also never discussed in his report, that after multiple PCA runs 
had failed to show separation between presumed poultry and cattle impacted samples, he ran two 
PCAs with the explicit objective of getting separation between these two groups of samples.  
Those attempts failed, and the cattle argument that appears in Olsen’s report mentions none of 
this.  Instead, Olsen advanced a new argument (based on a different criterion) that somehow led 
to the same opinion expressed during the PI.  Olsen’s opinion never changes, only the argument 
necessary to explain new data. 

Even in the absence of these errors, it is doubtful that a properly implemented PCA, applied to 
these data, would yield unambiguous results with regard to sources.   One reason is data quality.  
Olsen collected 2,325 individual samples of the type included in his primary surface water PCA 
run.  Only 267 (11.5%) had data for all 26 variables in Olsen’s PCA run.  Of these 26 variables, 
the four bacteria variables (total coliforms, E. coli, enterococcus, fecal coliform) were the most 
problematic: missing in 28 to 41 percent of samples in Olsen’s PCA.  The missing data 
substitution method employed by Olsen violates the assumptions inherent in a multivariate data 
analysis, and likely contributes more noise to the system.  Another concern is Olsen’s use of data 
from multiple analytical methods.   To the extent that there is bias between analytical methods, it 
can result in non-random variability.  Phosphorus was one such analyte, run by different 
methods, and by different laboratories.  Bacteria and phosphorus are not secondary parameters in 
the analysis.  They are in fact the two parameters cited in Olsen’s summary PCA opinion, where 
he claims to have identified a “distinct chemical signature that contains both phosphorus and 
bacteria.”122 

But most importantly, Olsen’s PCA applied to this data set did not resolve sources because these 
chemicals are not conservative in the environment.  That is, they do not behave similarly in an 
aqueous environment.  Diagnostic chemical differences and ratios that might be observed in the 
original presumed source materials (i.e. poultry litter, cattle manure, and WWTP effluent) are not 
preserved once those constituents are in water.  Olsen’s analysis was doomed from the start 
because he assumed a geochemical system controlled by unchanging ratios of source-diagnostic 
chemicals/bacteria.  As discussed in Section 4.0, the actual controls on this system are the 
degrees to which a few key chemicals (in particular total sodium, chloride, total iron and total 
aluminum) have a preferential affinity for dissolved phase, or tend to be associated with 
suspended particulate matter.  Olsen has not discovered unique chemical/biological signatures 
related to poultry and WWTP effluent.  Rather, his PCA does nothing more than distinguish 
between turbid water and salty water.  To the extent that total phosphorus is explained by his 
analysis, it is because variability of total phosphorus is a function of its association with iron, 
aluminum and suspended particulate matter.  The other key parameters in Olsen’s supposed 
poultry signature (bacteria, copper, arsenic, and zinc123) exhibit an extremely poor fit in Olsen’s 
model.  

The use of mathematical techniques such as PCA carries with it the aura of precision and 
exactitude. The associated jargon and the fact that it is mathematically complex is daunting, such 
that somebody who understands the method a little can often intimidate a skeptic that doesn’t 
understand it at all.  But it is not magic, and it does not give one special powers to see things in 
the data that are otherwise unobservable.  The mathematics of PCA may be objective and 
straightforward, but the interpretation is entirely subjective.  It is therefore incumbent upon the 
                                                 
122 Olsen (2008a). p. 2-1. 3rd bullet – final sentence. 
123 Olsen (2008a). p. 1-2 (3rd bullet), and  p. 6-27. 
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data analyst to evaluate the efficacy of that interpretation in an open and honest manner. Olsen 
failed to do this. When we dig just a little deeper into his analysis, his theory of a source driven, 
poultry dominated system falls apart.   

But in conclusion, putting aside the problems of assumptions, philosophy of data analysis, 
methodology and logic, consider this.   Olsen’s SW3 and SW22 PCA runs included 15 samples 
presumed or collected with intent of characterizing sources other than poultry (2 cattle edge-of-
field; 3 cattle impacted springs; 4 WWTP; and 6 Tahlequah urban stream samples).  Every single 
one yielded a PCA score which fits Olsen’s criterion for exhibiting his unique poultry waste 
signature. Olsen’s PC1 threshold is without a doubt, not unique and he has failed to establish a 
poultry-specific biological and chemical signature.  
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A1  Principal Components Analysis (PCA) Overview 
Roger Olsen conducted a series of principal components analyses (PCA) of water and solids data 
from the Illinois River Watershed (IRW).  Because much of the main part of my report is a critical 
review of Olsen’s PCA implementation and interpretation, a review of the method is in order.   PCA 
is an exploratory data analysis tool, often used in environmental forensics investigations (Johnson, 
et al., 2007).   The objective is to reduce the dimensionality of a data set in which there are a large 
number of interrelated (i.e., correlated) variables, such that similarities and differences between 
samples may be viewed on a single plot, without loss of information.  This dimensionality reduction 
is achieved by transforming the data to a new set of uncorrelated (i.e. mutually orthogonal) 
reference variables, which are termed principal components (PCs). The PCs are sorted such that 
each in turn, accounts for a progressively smaller percentage of variance. If the vast majority of 
variance between samples can be accounted for by a small number of PCs, then relationships 
between multivariate samples may be assessed by simple inspection of a 2 or 3-dimensional plot, 
referred to as a principal components scores plot (PC scores plot).   As such, PCA and related 
methods are often referred to as “dimensionality reduction” methods.   

On page 6-32 of his report, Olsen cites a list of publications where PCA has been applied to 
environmental data.  It is true that PCA can be a useful in such investigations, and that there are 
numerous case studies in the literature where it has been successfully applied.  I have published 
such peer-reviewed papers and book chapters myself.1  Olsen has not.2  But Olsen’s literature 
citations imply that the mere existence of such literature supports the supposition that PCA applied 
to IRW data will result in unique chemical/biological signatures related to source.  This is not true, 
and the fact that there is a large body of literature does not give Olsen, or anybody else, license to 
abuse the method, make mistakes in its implementation, misinterpret the results, or conceal 
information that contradicts their a priori theory.  The success of PCA depends on the 
environmental system under study, and the quality of the data being analyzed.  It also depends on 
the analyst having an understanding of the chemical system, and the mathematics/assumptions of 
the method.  There are numerous pitfalls for the unwary and inexperienced. The purpose of this 
Appendix is to outline the PCA method in more detail, and to evaluate Olsen’s implementation and 
interpretation with respect to the aforementioned pitfalls.  

A1.1 Mathematics of PCA 
Mathematically PCA involves an operation called “eigenvector decomposition.” This operation is 
common to many multivariate methods, including PCA, factor analysis, self modeling curve 
resolution, polytopic vector analysis, and target transformation factor analysis.3  PCA involves 
decomposition of a covariance or correlation matrix into a set of eigenvectors.  Olsen’s analysis 
used the correlation matrix option.  Eigenvector decomposition may be done using one of several 
methods4 but given the same data pretreatment (i.e. transformations, substitution schemes for 
censored data, etc.) the calculated principal components scores and loadings should be the same, 
regardless of the algorithm.  The result is a set of eigenvectors or principal components that serve as 
an alternative orthogonal coordinate system in which one may plot the data.  Another result of this 
set of mathematical calculations is a set of ‘eigenvalues’ which are a function of the amount of 
variance accounted for by each principal component.  Other matrices that result from a PCA include 
                                                 
1 Johnson, et al., 2007; Magar, et al., 2005; DeCaprio, et al., 2005; Johnson and Ehrlich, 2002; Johnson, 2002; Johnson, et al., 2000; 

Jarman, et al., 1997; Dore, et al., 1996; Ehrlich, et al., 1994. 
2 See Olsen 9/11/08 Deposition. p. 306. Lines 2-8. 
3 Johnson, et al., (2007); Malinowski (1991). 
4 See Malinowski (1991); Johnson et al., (2007) 
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scores and loadings.  PCA and factor analysis texts vary in both jargon and matrix nomenclature, 
but the equations below will replicate matrices as reported by SYSTAT (the commercial software 
package used by Olsen to implement his PCA). 

To calculate the various matrices that consitute the results of a PCA, one starts with a raw data 
matrix X, with m rows (samples) and n columns (variables/chemicals) reported in units of 
concentration (e.g. mg/L or organisms/100 mL).  In the case of geochemical data, we usually have 
many more samples than variables (i.e. m > n).  As this is the case for Olsen’s data,5 the matrix 
descriptions and calculations below are for the case where m>n.   

Transformatons are usually applied to X in order to optimize the analysis.  Transformations actually 
used by Olsen are discussed in Section A2.2.  To the extent that transformations are done, I will 
refer to the transformed matrix as Xtran.  Given the n x n correlation matrix C of transformed matrix 
Xtran PCA may be accomplished through a singular value decomposition as shown in this equation: 

            C = U Λ Vt 
where V is the matrix of eigenvectors (n x n) and Λ is the diagonal matrix (nxn) of eigenvalues.  For 
principal components analysis, the equation above is typically re-expressed in terms of two 
additional matrices: ‘scores’ (S) and ‘loadings’ (L).  The loadings matrix may be calculated by 
multiplying the eigenvectors by the square root of the eigenvalues: 

L = V Λ½
   (L= nxn loadings matrix) 

If we scale the columns of the loadings matrix L by the eigenvalues (Λ) we get a matrix that 
SYSTAT referes to as ‘factor coefficients’ (designated here as F).  We can then calculate the scores 
S, by multiplying transformed matrix Xtran by F: 

S= Xtran F  (S=mxn scores matrix) 

This equation will recreate scores as reported by SYSTAT, but it will not recreate the scores 
reported and used by Olsen in his report. Olsen calculated scores outside of SYSTAT, within 
EDAnalyzer, and his method is discussed in more detail in Section A2.3. 

A typical objective of PCA is to reduce the dimensionality of the data set, but the scores and 
loadings reported from the equation above are still of full rank (i.e. they still have n columns).  The 
dimensionality of the data is not reduced until one decides how many of the n PCs are ‘significant.’  
If higher numbered principal components can be considered ‘noise’ we can reduce the 
dimensionality of the system by looking at only the first k principal componenets, where k is some 
number less than n.  In Olsen’s case, he ultimately determined that 2 principal components were 
‘significant’ (i.e. k=2).  With one exception (PCA Run SD1 – see Section 2.3.4 of the main body of 
this report) Olsen considered/interpreted/plotted only the first two columns of matrix S and the first 
two columns of L. 

Scores and loadings matrices may be multipled together to get an estimate of matrix Xtran using a 
reduced number of principal components. The comparison of such an estimate to the original data 
matrix is a common characteristic of many methods designed to help an analyst determine the 
number of significant principal components.  However, because Xtran represents a transformation 
of the original data matrix, X, a ‘back-calculation’ is necessary in order to get the estimate of X ( $X ) 
                                                 
5 For SW3 (and all of Olsen’s PCA runs) m>n .  For example, in the case of Olsen’s SW3 PCA run, there were m=573 samples and 

n=26 variables.   
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back in the originally measured units. As an example, if one  chooses to do a log transformation 
prior to eigenvector decomposition (as Olsen did) they will need to take the inverse of that 
transformation in order to get an estimate of $X  in the units of the raw data matrix (e.g. mg/L).  This 
is discussed in more detail in Section A1.3. 
 

A1.2 A Geometric Description of PCA. 
The above description tells one, in mathematical terms, how to calculate principal components.  But 
it provides little in the way of an intuitive feel for what a principal component is.  Geometrically, 
the first principal component is essentially a linear regression line through the data cloud, along the 
direction of greatest density of data points.  Successive PCs are calculated such that higher 
numbered principal component axes (PCs 2, 3 and higher) meet the following criteria: (1) each must 
account for as much of the remaining variance as is possible, and (2) the new PC axes must be 
mutually orthogonal (i.e. at a 90o angle) with respect to all PCs previously resolved.  Successively 
higher numbered eigenvectors (principal components) account for successively smaller percentages 
of the variance.6   

A graphical PCA example is provided in Figure A-1 below.  This figure shows a data set with three 
measured variables (a three-dimensional system).  The sample points that are plotted there (black 
dots) define a 3 dimensional, slightly flattened cigar-shaped data cloud.  If we were to do a principal 
component analysis of this data set, PCA would calculate a set of three eigenvectors, plotted within 
this three dimensional data cloud.  As indicated in the previous paragraph, the first eigenvector plots 
along the longest axis of the data cloud (i.e. the ‘length’ axis of the cigar).  To the extent that one 
considers the slightly flattened dimension of the ‘cigar’ unimportant to one’s concept of a ‘cigar 
shape’ we can get a realistic understanding of the size and limits of this geometry by plotting the 
data on the first two axes.  We have reduced the three dimensional (x, y and z) data to two 
dimensions (eigenvectors 1 and 2) without loss of much information. 

                                                 
6 Malinowski (1991). p. 47; Johnson et al., (2007) 
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Figure A-1. Example of three eigenvectors plotted in three dimensional variable space. 
Example taken from Brown (1994). 

Now let us consider a system related to environmental chemistry.  Figure A-2 shows a scores plot 
from a PCA of a polychlorinated biphenyl (PCB) data set (24 samples and 56 chemicals).  I have 
published this example in both an environmental forensics book chapter and a journal article.7 In 
terms of dimensionality, this system can be thought of as 24 sample vectors plotted in 56 
dimensional space. We cannot plot a 56 dimensional vector on a 2 dimensional graph, at least not 
without some sort of mathematical calculation such as PCA.   When we do a PCA/eigenvalue 
decomposition of these data, it turns out that two principal components achieve the goal of 
dimensionality reduction, because 2 PCs account for more than 92% of the variance in this data set.  
Having begun with a high dimensional system (24 samples plotted in 56 space) we can now plot 
those samples on a two dimensional ‘scores plot’ with very little loss of information.   

                                                 
7 Johnson, et al., (2007). Johnson, et al. (2002); Johnson and Ehrlich (2002). 
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Figure A-2. Two principal component score-plot of PCB data set published by Johnson, et al., (2007).   
Two PCs may account for  >92% of the variance of Data Set 1, but are insufficient to allow distinction of the two Aroclor 1254 
variants (see Section A1.3). 

In terms of the matrices described in Section A1.1, we plot the first column of matrix S on the x-
axis, and the 2nd column of S on the y-axis. To interpret such a plot, the main thing to keep in mind 
is that samples that plot close to each other have similar chemical compositions.  Samples that plot a 
great distance from each other have different chemical compositions.  On this plot, there are two 
distinct, well separated clusters, and we are clearly looking at two groups of samples with different 
chemical compositions.   

Understanding and correctly interpreting a PCA scores plots depends to a great extent on the user 
understanding exactly what a principal component is (and more importantly what it is not).  Note 
that the data on this figure do not define a data cloud geometry anything at all like Figure A-1, so it 
would be naïve to equate principal component 1 with “cigar length.”  Note also that the two source 
clusters do not plot directly on either of the two principal components, so it is equally naïve to make 
the claim that “PC1 equals Aroclor 1254” or that “PC 2 equals Aroclor 1248.”  When applying PCA 
to environmental chemical data, you cannot assume that principal components are equivalent to 
sources.  Rather they merely serve as an alternative cartesian coordinate system that allows plotting 
of data on a simple graph.  The practice of equating a principal component to a “thing” with 
chemical or physical meaning is termed ‘reification’ and will be discussed in more detail later in 
this Appendix (Section A1.4). 

Correctly interpreting a PCA scores plot also depends on having sensitivity to what are referred to 
as “data pathologies.”  All chemical systems are not the same, and different types of data manifests 
themselves differently on a scores plot.  The data set shown above is a very simple system: a two 
source, “hard-clustered” data set.  There are two distinctly separate clusters of samples related to 
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the chemical composition of different sources: Aroclor 1248 (A1248) or Aroclor 1254 (A1254).  A 
hard-clustered or crisp data set is one in which each and every sample can be unambiguously 
classified into one, and only one group (in this case, it is either “Aroclor 1248” or “Aroclor 1254”).  
No samples are mixtures of say 50% A1248and 50% A1254.  If there were such a mixture on this 
plot, it would plot about half way between the two clusters.      

In contrast to a hard-clustered system, Figure A-3 shows a scores plot for data with similar sources, 
but a very different data pathology.  This data set has samples (blue dots) that are mixtures of three 
sources, but not a single sample has a pure, 100% contribution from any single source. If it did, the 
single-source samples would plot at or very near the corners of the gray shaded triangle.  One of the 
most common mistakes in the application of PCA to environmental chemical data is to look at a 
mixed or gradational data set and interpret it as if it were a hard clustered data set.  It would be 
naïve, simplistic and wrong to look at Figure A-3 and set some arbitrary rule based on a hard-
partition threshold, and make a statement such as “all samples with PC2 scores > 0 are impacted by 
Aroclor 1248, and all samples with PC2 scores < 0 are not.”  Such a statement imposes a hard-
clustered conceptual model upon a data pathology that is anything but clustered.  

 
Figure A-3. Three PC scores plot for 3 source, mixed PCB data set published by Johnson, et al., (2007). 

A1.3 Determining The Number of Significant Principal Components. 
One of the most difficult aspects of PCA is determining the number of “significant” eigenvectors or 
principal components.  Numerous methods have been proposed for this determination (Cattell, 
1966; Exner, 1966; Malinowski, 1977; Miesch, 1976a; Wold, 1978; Ehrlich and Full, 1987; Henry 
et al., 1999, Johnson, et al., 2007). The spirit and intent of these methods are similar: the estimated 
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data set, as back-calculated from reduced dimensional principal component space (X̂), should 
reproduce the measured data (X) with reasonable fidelity. A common method used to justify one’s 
choice of number of principal components retained is the percent variance criterion.  Using this 
method, the analyst will show a principal component scores plot, and justify the choice of 2 or 3 
PCs with a statement like “2 PCs accounts for 76% of the variance.” The tacit assumptions in such 
a statement are that the remaining 24% is (1) random noise, and (2) irrelevant to the problem under 
study.  There is no objective criterion to determine what percentage of variance is “significant.”  
Malinowski addressed this problem more than 15 years ago:  

“In practice, eigenvectors having large variances are considered to be primary eigenvectors, 
whereas eigenvectors having small variances are considered to be secondary eigenvectors.  
Unfortunately, classifying the variance as large or small presents a problem.  It is at this critical 
point in the process that various investigators diverge.  Often, the factor analyst gives no 
justification for the cutoff point used in the variance classification, thus casting doubt on the 
conclusion.”8   

“In general the method can be deceptively misleading and is not recommended unless one can make 
an accurate estimate of the true variance in the data.” 9  

Ehrlich and Full (1987) expressed a similar, if more visceral objection, presented within context of 
the application of PCA and factor analysis to geochemistry: 

“In the framework of our discussion, we mentioned that each eigenvalue represents a portion of the 
total variance of the system.  If eigenvalues are arranged in order of the decreasing variance 
accounted for (the usual case), can we say that the first eigenvalue is most important because it is 
associated with the most variance?  The answer is, of course, no. 10  

And later, they state: 
 A common erroneous statement made by ignorant practitioners of factor analysis is that ‘only the 
first k eigenvalues .. will be considered inasmuch as they account for 70% of the variance’.”11   

To illustrate the potential problems with the percent variance criterion, refer back to the PCA scores 
plot in Figure A-2.  That 2 PC model accounted for 92% of the variance, a seemingly impressive 
number.  The associated scores plot showed two distinct and interpretable clusters.  All of the red 
diamonds on that figure were Aroclor 1248 (a PCB product) and all cyan circles were Aroclor 1254 
(another PCB product).  This all seems to tie together to tell a nice simple story.  It appears to be an 
impressively simple, hard-clustered, two source system that accounts for the vast majority of the 
variance.  It certainly seems safe to assume that the remaining 7.5% of the variance is random noise. 
But, these conclusions and assumptions are wrong.  It is not a 2-source system: it is a 3-source 
system.  I know, because I created this data set by combining compositions of published PCB 
sources,12 and have used this data set as an example in my publications.13  Figure A-4 shows a three 
component scores plot for the same data shown in Figure A-2.  

                                                 
8 Malinowski (1991). p. 111 (emphasis added). 
9 Malinowski (1991). p. 112. 
10 Ehrlich and Full (1987). p. 39 (emphasis added). 
11 Ehrlich and Full (1987). p. 39 (emphasis added). 
12 Frame, et al., (1996) 
13 Johnson, et al. (2007); Johnson, et al., (2002); Johnson and Ehrlich (2002). 
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Figure A-4.  Three principal component score- plot of hard-clustered data set shown in Figure A-2.   
Three PCs account for 97.5% of the variance, and allow clear distinction of the three PCB sources. 

A three component solution accounts for 97.5% of the variance; an incremental increase over that 
accounted-for by two PCs. But that small percentage of variance is not random. The three-PC scores 
plot clearly distinguishes three clusters, rather than two, and effectively allows the analyst to infer 
the presence of the third source.  As it turns out, there are two variants of the PCB product Aroclor 
1254.  While the chemical patterns of both A1254 variants are more similar to each other than either 
is to Aroclor 1248, they undoubtedly have distinctly different chemical fignerprints (Johnson, et al., 
2008).  The variance accounted for by the compositional difference between A1248 and 
undifferentiated A1254 is much greater than the variance accounted for by the compositional 
difference between the two types of A1254. That is why we don’t see the difference in A1254 
variants until we look at a 3 PC plot.  This does not mean that Aroclor 1248 is “more important” 
than Late Production Aroclor 1254. Variance is not an function of scientific importance.  

In addition, while this system requires three PCs to differentiate three sources, you cannot reify the 
PCs.  In other words, one cannot make the statement that “PC1 is Typical A1254” or that “PC2 is 
A1248” or that “PC3 is Late Production A1254”.  I point this out because one of the issues in 
dispute in Olsen’s PCA application is his reification of principal components.  Olsen ultimately 
concludes that his principal components are sources.  Principal components are abstract sets of 
orthogonal axes that allow us to plot the data in reduced dimensional space.  They are not “things” 
that can be equated with physical or chemical reality.  This issue is dicussed in more detail in 
Section A1.4, in context of the distinction between ‘PCA’ and ‘factor analysis’ and the reasons why 
many workers prefer to steer clear of the latter term. 
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Other methods have been used in the literature to determine the number of principal components to 
retain in a PCA.  The scree test (Cattell, 1966) is closely related to the percent variance method, but 
rather than reporting a scalar value of the cumulative percent variance accounted for by retained 
PCs, the eigenvalues or percent variance are plotted on a graph.  The scree test is based on the 
supposition that the residual variance, not accounted for by a k principal component model, should 
level off at the point where the principal components begin accounting for random error. When 
residual variance is plotted versus principal component number, the point where the curve begins to 
level off should show a noticeable inflection point, or ‘knee.’ The problem with this criterion is that 
often there is no unambiguous inflection point, and when such is the case, the decision as to the 
number of significant principal components is arbitrary.14 

Another method used is the “average eigenvalue” method.    This criterion is based on the rationale 
that only those principal components whose eigenvalues are above the average eigenvalue should be 
retained for the model.  This criterion was first proposed by Kaiser (1960).  In those cases where 
PCA is performed on the correlation matrix, the average eigenvalue will be 1.0.  As such, this index 
is also referred to as the eigenvalue-one criterion.15   

Scree plots and average-eigenvalue are slightly more useful than the percent variance criterion, 
because there is at least some stated objective criteria associated with their use (as opposed to just 
reporting percent variance accounted for by 2 PCs, and moving on) but they can still be 
problematic.  As I point out in my PCA book chapter, these and other commonly used methods 
often yield ambiguous and/or contradictory results, in part because they are ‘single-index’ methods. 
Each involves calculation of a single numerical value or statistic, which represents the data set as a 
whole, as a function of the number of principal components retained. The data analyst typically 
compares the behavior of the index as additional PCs are retained, relative to some rule-of-thumb 
cutoff criterion (e.g. stopping at 70% variance, stopping at the average eigenvalue, and/or looking 
for an inflection point on a scree plot).  The idea of a rule-of-thumb decision criterion is 
troublesome because we have very little information to evaluate the efficacy of these rules.  The 
scree plot and average eigenvalue methods are included within SYSTAT (the software used by 
Olsen for his PCA runs).  However, Olsen ultimately ignored the results of these two methods and 
relied primarily on the percent variance criteria (Section A2.4).    

A better approach was first proposed by Miesch (1976a) whereby a goodness-of-fit index is 
calculated not just for the data set a whole, but on an individual, variable-by-variable basis.  An 
extension of Miesch’s method, the CD scatter-plot method16 will be discussed in more detail in my 
critical review of Olsen’s method of determining the number of “significant” principal components.  

A1.4   Factor Analysis vs. Principal Components Analysis 
The distinction between factor analysis and PCA was a topic of disagreement during the PI hearing. 
Olsen’s ‘factor analysis’ was criticized17 by citing literature where factor analysis was characterized 
as “a controversial and poorly understood methodology that extends the beguiling promise of 
instant insight to the researcher faced with more data than comprehension.” This quote is from 
John Davis’ book Statistics and Data Analysis in Geology, and falls within his discussion of the 
                                                 
14 See Johnson, et al., (2007).  p. 225. 
15 Malinowski (1991). P. 114. 
16 Johnson, et al., (2000; 2002; 2007) 
17 See Huber (2008). 
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sordid history of factor analysis in the social sciences.  Olsen maintains what he is not doing factor 
analysis at all, but rather principal components analysis.18 Olsen makes this claim despite the fact 
that he used SYSTAT’s “Factor Analysis” module19 to perform his calculations. Results reported in 
documents produced before the PI carried terminology such as ‘factor scores.’20  After the PI 
hearing, Olsen had changes made CDM’s in-house software EDAnalyzer21 such that the term 
‘factor’ would no longer appear in any of his output files.22 Clearly, the distinction between PCA 
and factor analysis was important to Olsen, and he wanted to distance himself from the latter term. 
The question is why.  The purpose of this section is to describe what is meant by the terms PCA and 
factor analysis, to offer some insight to the stigma associated with the latter term, and to bring the 
related criticisms of Olsen’s method into sharper focus. 

A1.4.1 PCA and Factor Analysis: The Distinction 
To the extent that there are differences between PCA and factor analysis, it is best to understand 
from the very outset that there is little agreement on terminology across scientific disciplines (e.g. 
chemometrics, psychometrics, engineering, mathematical geology, etc.).  Malinowski (1991) 
considers “principal components analysis” to be synonymous with what he calls “principal factor 
analysis” and as such, PCA is a subset within the larger realm of factor analysis.  Jackson (2003) 
makes a clear distinction between the two methods, says that the two methods are mutually 
exclusive, and that practitioners such as Malinowski are doing both procedures a disservice by 
making one a subset of the other.  So what Malinowski calls factor analysis, Jackson calls PCA.  
But the problem does not end with Jackson and Malinowski.  The definitions and distinctions 
between factor analysis and PCA depend on whom you ask, and on the corner of scientific literature 
that person worked in as part of their education and training.  What’s more, the interdisciplinary 
differences in jargon extend beyond the terms ‘PCA’ and ‘factor analysis.’  For example, the terms 
‘scores’ and ‘loadings’ have different definitions, depending on the literature being read.  In the 
mathematical geology literature, a matrix of samples with respect to a ‘factor analysis’ is termed 
‘loadings.’ The matrix of variables is termed ‘scores’ (e.g. Miesch, 1976a; 1976b).  But exactly the 
opposite terminology is used in the chemometrics literature. A chemometrician would call a 
geologist’s scores matrix ‘loadings’ and vice versa.23   

It is important to appreciate the existence of cross-discipline jargon issues, because in this 
Appendix, I cite literature from various disciplines.  While the citations are relevant, the jargon may 
not make it immediately obvious.  But having now more clearly recognized the issue for what it is, 
let’s cut to the chase: I am more concerned with understanding Olsen’s actual calculations and 
subsequent interpretations, than I am in the jargon he or anybody else might prefer in labeling it.  
To minimize jargon-related confusion, I will, whenever possible, use terms such as “PCA” “scores” 
and “loadings” in the manner apparently preferred by Olsen.  The reader is free to label the method 
and the resultant matrices using whatever jargon they prefer.   

A1.4.2 The Stigma of Factor Analysis 
Given the ambiguous distinction between PCA and factor analysis, one might ask why Olsen is so 
adamant that his method should be called PCA.  As John Davis made clear (see quote above) factor 
                                                 
18 See Olsen PI Deposition Testimony. 2/2/08. p. 244.   
19 SYSTAT (2007). 
20 See PCA Results files in State’s 01/21/2008 PI document production: PI-Olsen00028615 (‘Results_SW_0120_A.xls’) 
21 EDAnalyzer is CDM proprietary software - an Excel add-in program - used to facilitate the PCA. It serves as an interface between 

Excel and SYSTAT, and defines transformation, data analysis options for PCA, and reporting. See Olsen (2008a) p. 6-46 and Olsen 
deposition (9/11/08). p. 308. 

22 See 4/21/08 8:13 am email from Chappell to Olsen (OlsenCORR0016188.0001) 
23 Johnson et al. (2007). p. 222. 
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analysis has a controversial history based on how it was used by social scientists in the study of 
intelligence.  In the early 20th century: factor analysis was an important part of the science used to 
support theories of innate, hereditary intelligence of groups of people, as defined by race and/or 
social class.  Therefore, for better or for worse, the term ‘factor analysis’ carries a stigma that 
‘PCA’ does not.   

Much of the stigma can be traced to the 1981 book “The Mismeasure of Man” by Stephen J. Gould 
(Gould’s 1996 2nd Edition is cited here).  This book was in large part an indictment of factor 
analysis as applied to data from intelligence testing of children.   Gould made the case that a large 
body of factor-analysis-based psychometric research of the early 20th century was used to support a 
priori theories of a quantifiable, scalar metric of intelligence.  Applying factor analysis to 
intelligence test data, the chief proponents of factor analysis (Cyril Burt and before him, Charles 
Spearman) ultimately equated a factor axis (i.e. principal component 1) with the concept of "general 
intelligence."  Factor scores were then used as a method of ranking grade-school students, to 
determine if they had an aptitude for university, or if they were destined for the technical trades.  
That and related research was then used to argue that people of certain races and/or social classes 
were innately less intelligent.  As a result, the term ‘factor analysis’ carries with it the stigma of 
class-systems, racism and the limitation of children’s educational opportunities based on 
standardized test scores.  

But Gould’s indictment of factor analysis had little to do with a whether it was mathematically 
valid.   Gould acknowledged that he himself successfully used factor analysis in his own field of 
research (paleontology), and he conceded that “its mathematical basis is unassailable.”24  Neither 
did Gould make much of a distinction between factor analysis and PCA.25  Rather, ‘factor analysis’ 
takes the rap because that was the name applied to the method used by Spearman and Burt.  Gould’s 
indictment of factor analysis was based not on mathematics or jargon, but rather on the a priori 
prejudices of the scientists involved, how that predetermined their interpretations, and the flawed 
logic used to defend those interpretations.   

Based on activities later in his career, Burt was accused of academic fraud, and in particular 
fabrication of data (Hearnshaw, 1979). But in terms of factor analysis (the focus of Burt’s early 
career), the primary problems pointed out by Gould were (1) that factor analysis interpretations 
supporting theories of innate intelligence were predestined based on Burt’s a priori theory and bias; 
and (2) ‘reification’ – equating a principal component with a “thing” like general intelligence.  In 
terms of Burt’s a priori bias, Gould argues that Burt’s preexisting opinions were imposed on  his 
interpretations, such that Burt’s conclusions were little more than a self-fulfilling prophesy.26  With 
regard to reification, Gould pointed out that an eigenvector, principal component or factor is an 
abstract line through multivariate space, not a “thing” with physical reality.   Whether one prefers to 
call this line “Factor-1” or “PC-1” was not the point.  Rather it was whether or not you can equate a 
factor with a thing like intelligence.27   

Gould’s criticism of reification went beyond Burt’s work, as made clear when Gould wrote: “The 
history of factor analysis is strewn with the wreckage of misguided attempts at reification.”28  Nor 
is the objection to reification limited to Stephen J. Gould.  It has also been criticized in application 

                                                 
24 Gould (1996). p. 268. 
25 In fact, Gould acknowledges that the example he provides to explain the method of factor analysis, is technically PCA, not factor 

analysis (see Gould, 1996; footnote on pages 276-277). 
26 See Gould (1996). p. 304 
27 Gould (1996).  P. 280.   
28 Gould (1996). p. 298. 
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to chemical data.  Malinowski (1991) discussed PCA (which he terms “principal factor analysis”29) 
in context of chemistry applications.  Using the term “abstract factors” to refer to the orthogonal 
PCA scores and loadings, Malinowski made the following points.    

“Principal factor analysis yields an abstract solution consisting of a set of abstract eigenvectors and 
an associated set of abstract eigenvalues. Each principal eigenvector represents an abstract 
factor”30   

“Unfortunately, no physical meaning can be attached to the resulting matrices since they represent 
mathematical solutions only.”31 

“The row and column factors in their abstract forms are not recognizable as physical or chemical 
parameters, since the reference axes were generated to yield a purely mathematical solution.  For 
scientific purposes we seek chemically recognizable factors.”32   

The inability to interpret abstract principal components loadings in real chemical context was 
ultimately the reason why chemists developed target transformation factor analysis (Malinowski, 
1991; Hopke, 1989); why geologists developed polytopic vector analysis (Ehrlich and Full, 1987), 
why chemometricians developed alternating least squares (ALS: Tauler, et al., 1993; Tauler, 1995) 
and why scientists/engineers studying air pollution developed extended self-modeling curve 
resolution (Kim and Henry, 1991; Henry, 2003).    All of these methods use principal components 
analysis as a mathematical basis, but they do not reify orthogonal PCs as sources.33  

Given this dubious history, most now try to steer clear of the term ‘factor analysis’ in favor of the 
mathematically similar, but less controversial ‘principal components analysis.’  Roger Olsen is no 
exception.  Even though he uses SYSTAT’s “Factor Analysis Module”, he would prefer that we call 
it principal components analysis.  But focusing the argument on the jargon misses the point.  
Regardless of the terminology preferred by Olsen or anybody else, his work is best judged on the 
validity of assumptions, the logic of the application and the defensibility of interpretations.  As 
shown throughout the main body of my report and this appendix, even if we agree to call Olsen’s 
method PCA, he has repeated key mistakes of factor analysts such as Cyril Burt.  He came into the 
process with an a priori opinion of a predominant poultry-waste impact in the IRW34 and that 
opinion never changed regardless of what new data showed (see Section 3.3.2). Olsen consistently 
reified principal component 1 as ‘poultry waste’ or ‘the chicken signature’, and principal 
component 2 as ‘WWTP effluent’.35  Contradictory data were ignored, rationalized to fit his a priori 
theory, and/or concealed (Section 3.0).  In one case, PCA results that contradict Olsen’s theory were 
actually altered so that a map would appear to better fit Olsen’s theory (Section 3.1: Tahlequah).   
Whether this was done under the guise of PCA or factor analysis is hardly the point. 

A2   Steps in Olsen’s PCA 
There are numerous data pretreatment options, transformations, goodness-of-fit diagnostics, and 
other data analysis decisions that can be done under the umbrella term “PCA.”  Add to this the 
confusion of different jargon used in different sub-disciplines, (see Section A1.2) we see that 
“PCA” is not definitive statement of one’s entire methodology.  On pages 6-32 through 6-66 of his 
                                                 
29 Malinowski (1991). p. 19.  
30 Malinowski (1991). p. 19. 
31 Malinowski (1991). p. 57. 
32 Malinowski (1991). p. 61. 
33 See Johnson, et al. (2007) for review and comparison of these methods, as applied to a common environmental chemical data set.   
34 From the time CDM began work on this project, the project carried the acronym ‘OPL’ (Oklahoma Poultry Litigation), so it is clear 

what Olsen’s the initial working hypothesis was. 
35 See Olsen (2008a: p. 6-57. 3rd paragraph), Olsen 2/2/08 deposition testimony (p. 102 lines 17-18;  p. 115 lines 21-22; p. 263 lines 

7-9; p. 264 line 22; p 265 line 1) and  Olsen 9/11/08 deposition testimony (p. 337 lines 12-14).  

Case 4:05-cv-00329-GKF-PJC     Document 2169-3 Filed in USDC ND/OK on 06/05/2009     Page 90 of 125



   Johnson: Appendix A: PCA Methodology  A-14 
 

report, Olsen describes his data management practices,  preparation steps, preprocessing options, 
calculations, back-calculations, and interpretations. While that section of Olsen’s report comprises 
35 pages of text, his descriptions were ultimately insufficient to reproduce the analyses.  I was able 
to fill in these gaps by trial and error, by matching matrices to the results reported in Olsen’s 
production material.   

To check Olsen’s methodology, I reproduced his PCA run SW3, which was the primary basis of his 
opinion that poultry-waste was “by far the dominant contamination source” in surface waters of the 
IRW.36  I used the normalizations and transformation that he indicated as a starting point.  To the 
extent that I found errors or gaps in his method descriptions, I will clarify those ambiguities within 
this section of Appendix A.  I reproduced Olsen’s SW3 analysis by (1) implementing PCA using the 
scientific computing package Matlab (the Mathworks, Natick, Mass) (2) checking these results 
against PCA results reported by Olsen in spreadsheet files contained in his production materials, 
and (3) by checking results against results reported by SYSTAT (the software that Olsen used for 
his PCA) applied to the same data sets.   

A2.1 Data Screening 
Prior to implementation of PCA, Olsen performed a series of preprocessing steps using an Excel 
add-in program called ‘EDAnalyzer.’  This program is a CDM-developed application used to do 
exploratory analysis, and set desired parameters for subsequent PCA of the data.37  The actual PCA 
itself was not done in EDAnalyzer, but rather EDAnalyzer linked to SYSTAT’s Factor Analysis 
module.38 

One of the goals of the data screening process is identification and handling of missing data.  The 
data sets analyzed by Olsen had a surprisingly high incidence of missing data.  Many analytes of 
interest in Olsen’s PCA were not routinely analyzed in all samples collected, or were missing from 
the database because the data were rejected. For SW3, 573 samples from 10 groups were included 
in the PCA.  However, if you look at all water samples in those 10 groups, there are 2,325 
individual water samples (see Table 2-1: p. 12 of the main report).  Of those 2,325 samples only 
11.5% (267 samples39) included analyses for all 26 analytes in that PCA run.  The vast majority of 
water samples considered by Olsen for this PCA had missing data.40 By allowing inclusion of 
samples with data reported for at least 20 of 26 variables (i.e. up to six missing data points per 
sample were allowed in SW3) Olsen was able to get the number samples analyzed in SW3 up to 
573 (still only about ¼ of the available samples).41   

This entire practice was puzzling, because (1) it is not possible to calculate principal components 
using a matrix with missing data (aka “holes” in the matrix); (2) while SYSTAT allows samples 
with missing data to be input into a PCA, the software will by default, delete such samples from the 
analysis42 and will not return principal component scores for them.  But the PCA results produced 
by Olsen43 include scores for all samples, including those with missing data.     

                                                 
36 Olsen (2008a). p. 1-2. 
37 Olsen, p. 6-40. 
38 Olsen, p. 6-40. 
39 See Olsen Table 6.11-7a.   Summary for PCA Run SW15 (Same as SW3 with no missing data allowed) 
40 To clarify, when I say missing data, I do not mean that a chemical or bacterial analyte were sampled for but not detected (i.e. non-

detect).  Rather I mean that the chemical or bacterial analyte was not sampled for or the data were rejected. 
41 See Table 6.11-7a and text on page 6-40, 3rd paragraph 
42 Systat (2007). p. I-492 
43 For example, see SW3 result produced by Olsen in the file ‘Results_Water_0427_SW_3.xls’ 
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Olsen attempted to avoid this limitation with a work-around: he substituted the average (mean) 
concentration for missing data, prior to running PCA.44  As an example, if a sample was missing 
data for total phosphorus, Olsen’s substitution method would assign the mean phosphorus 
concentration for all samples in which phosphorus was measured.  This was done regardless of the 
concentration of related chemicals (e.g. total dissolved phosphorus) in the sample with missing total 
P, and regardless of whether that sample was collected from an edge of field location, a stream 
adjacent to a golf course, a waste water treatment plant or a head-water stream.  This is at best, a 
kluge: a clumsy and inelegant work-around designed to circumvent a fundamental data quality 
problem. For a number of reasons, it is inappropriate.  There is a philosophical objection:  the mean 
is a univariate measure of central tendency.  An underlying assumption of PCA is that we are 
dealing with a multivariate system.  The substitution of a univariate estimate for missing data in a 
multivariate system subverts the underlying conceptual model.  For example, if E.coli data were 
missing in a base-flow stream sample and in an edge of field sample, both samples would be 
assigned the exact same value (the average of all reported E. coli measurements) in that PCA run.  
In addition, Cowan (2008) clearly and empirically shows that Olsen’s method of missing-data 
substitution actually adds artificial variability to the system, and alters where in the data cloud the 
principal components will be located.   

Be that as it may, Olsen established a criterion for each of his PCA runs where some allowable 
number of missing data points would be tolerated in samples.  For PCA run SW3 he set that number 
at 20.  Given 26 variables, that means that he would retain samples that had ≤ 6 missing data points.  
That criterion tells us about missing data allowed as a function of samples, but Olsen’s report never 
tells the reader about missing data with respect to variables.  This leaves the impression that missing 
data are spread evenly across all variables, but that is not the case.  Some of the variables in SW3 
(particularly bacteria) have extremely high occurrences of missing data. As is shown on the table 
below, for his four bacteria variables, data are missing in more than a quarter of samples.  Of these 
four, the worst case is E. coli, where 41% of the samples have missing data.  

EDA_Variable % Missing

COLIFORMS  161 of 573 28%
ECOLI      233 of 573 41%
ENTERO     163 of 573 28%
FECAL      163 of 573 28%

# Missing Data 
Points in SW3

 
Olsen acknowledged in deposition testimony that he was aware that E. coli and other bacteria were 
often missing, and that this was due to high rates of rejected data.45   

Many samples had no bacteria data reported at all, but other bacteria results had multiple reported 
values in the database (i.e. duplicate values).  An example set of duplicate analyses for one bacteria 
analyte (coliforms) is shown below.  In this case, surface water sample BS-REF3, collected on 
September 1, 2005, includes four results and the four reported values exhibit a wide range (ranging 
from non-detect to 900 organisms per 100 mL).46   

                                                 
44 On page 6-53 Olsen indicates that he did his substitution for  missing data after PCA loadings and coefficients were calculated  

(Step 11: calculate PC scores).  This is not the case.  To reproduce Olsen’s reported PC loadings, coefficients and scores one must 
substitute the mean for missing data prior to transformation and eigenvector decomposition. 

45 Olsen Deposition. 9/11/08. pp. 424-425. 
46 These data were taken from Olsen’s subdatabase spreadsheet used as the source for his PCA run SW3: 

“Subdatabase_Water_0427.xls” 
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For use in PCA, duplicate analyses such as this (or in this case quadruplicates) Olsen would 
calculate the average of the replicate values, and use that average (mean) number in his PCA.   The 
average of these four values is 460 org/100ml.  Olsen’s SW3 PCA run used a value of 313.547  for 
the variable ‘coliforms’ in BS-REF3 (which is the average of the first three data points, and 
substituting ½ the detection limit (0.5 org/100 mL) for the “U” qualified (non-detect) result.  Olsen 
did not use the second 900 org/100mL value in his mean calculation, which suggests perhaps this 
second 900 was duplicate of the first 900 data-entry, rather than a true  duplicate, but this is not 
explained by Olsen.  Regardless, note that the average value used by Olsen for ‘COLIFORMS’ in 
‘BS-REF3’ (313.5 org/100 mL) is not near any of the actual, measured values (see Cowan,  2008). 

Myoda (2008) addresses the high incidence of missing bacteria data in more detail, as well the high 
variability of those data.   Myoda also addresses other bacteria data quality concerns (e.g. more than 
60% of the bacteria data that were retained for Olsen’s analysis were not analyzed by the lab within 
the method-prescribed holding times).  In Section A2.4 of this appendix, we will see that all four 
bacteria variables exhibit very poor goodness-of-fit in the PCA.  This presents a major problem for 
Olsen’s ultimate conclusions, because bacteria is one of two major constituents of his poultry 
fingerprint.  In his summary of major opinions at the beginning of his report, Olsen says “In the 
PCA, the chemical and bacterial composition of poultry waste creates a distinct chemical signature 
that contains both phosphorus and bacteria.”48   

There is also a data quality concern for the second analyte highlighted in Olsen’s quote above.  
Phosphorus (P) is a key part of Olsen’s “unique poultry waste signature.”  Olsen’s SW3 PCA run 
included 3 different forms of phosphorus (soluble reactive P, total P, and total dissolved P).  These 
parameters were analyzed by three different laboratories (A&L, Aquatic Research, and the USGS).  
The majority of analyses in Olsen’s database were conducted by Aquatic Research, but hundreds of 
analyses were also run by the A&L and USGS labs.  In addition the database includes different 
analytical methods.  The number of samples in SW3, broken out by method, are summarized on the 
table below. The samples collected by CDM/Lithochimea were analyzed by three different methods 
(365.2, 6020, and 4500), and by two different labs (A&L and Aquatic).  The USGS samples were 
analyzed by a 3rd lab (USGS’s lab) using yet different methods (P00665, P00666 and P00671).  The 
USGS methods are not discussed in Olsen’s text.    

In some instances, a single sample would have P data reported from multiple phosphorus methods, 
and some methods were considered more reliable than others.  For example, Olsen reported that 
method 365.2 was more susceptible to interference in the sample matrix, so those analyses had 
greater potential to be biased high.49  Therefore, in instances where data were available from both 
methods 365.2 and SM4500, the SM4500 results were chosen by Olsen for use in his PCA.50  In 
addition, there are instances where there are no P data reported at all (see missing data for total P 
and soluble reactive P on the table below).  
                                                 
47 See REF3 data for SW3 input matrix, in Olsen produced spreadsheet “Crosstab_Water_0427_SW_3.xls” 
48 Olsen summary of major opinions (Olsen, 2008a; p. 1-2 3rd bullet, final sentence) 
49 Olsen (2008a). p. 3-5.  
50 See ‘Water (P Protocol)’ worksheet within Olsen produced Excel spreadsheet ‘PCA_Main_Database_Water.xls' 
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P Protocol Code Param ID (Method)
P_TD_365 Total Dissolved P (365.2) 58
P_TD_4500 Total Dissolved P (4500PF) 349
P_TD_6020 Total Dissolved P (6020) 24
USGS P00666 Dissolved P (USGS P00666) 142

573

P Protocol Code Param ID (Method)
P_T_365 Total P (365.2) 40
P_T_4500 Total P (4500PF) 345
P_T_6020 Total P (6020) 28
P_T_ortho Total ortho P (365.2) 17
USGS P00665 Total P (USGS P00665) 142

1
573

P Protocol Code Param ID (Method)
P_SOL_REAC_365 Dissolved Ortho P (365.2) 69
P_SOL_REAC_4500 Soluble Reactive P (4500PF) 349
USGS P00671 Orthophosphate (USGS P00671) 142

13
573

Data Compiled from Olsen Produced Spreadsheet: 'PCA_Main_Database_Water.xls'

Number of 
Samples in 

SW3

Missing Data

Number of 
Samples in 

SW3

Total Dissolved P

Total P Number of 
Samples in 

SW3

Missing Data

Total

Total

Total

Soluble Reactive P

 
The mixing and matching of data from multiple labs, using multiple analytical methods (especially 
when there is suspected bias between methods) can be problematic in application of eigenvector 
methods such as PCA.  When PCA is used for chemical fingerprinting/source identification (as is 
the case here) the data analyst often makes the tacit assumption that systematic variability is related 
to differences in sources.  But there are many potential causes of systematic variability (e.g. 
degradation, and bias introduced by data from multiple lab methods).  To the extent that there may 
be bias between these methods (and Olsen acknowledges that there is) this could contribute 
systematic variability to a PCA. 

 
A2.2 Data Transformations 
Prior to implementation of PCA, Olsen also undertook a series of data transformations.  Such 
transformations are commonly done in PCA, in order to condition the data matrix, and/or optimize 
the analysis.  Olsen used two transformations prior to his PCA.  The first was a log transform.  He 
replaced every data point in the matrix with base 10 log of that value.  In general, log 
transformations are useful in situations where variables are log-normally distributed, and if the 
method being used requires an assumption of normally distributed data.  In my experience with 
PCA, such a transformation is not really necessary because PCA used in an exploratory data 
analysis mode (as Olsen uses it here) does not require any assumption regarding data distributions.   
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The second transformation done by Olsen was a homogeneity of variance normalization, which may 
be accomplished by calculating principal components from a correlation matrix.51  This 
transformation has the effect of creating homogeneity of variance, such that the variance of high 
concentration analytes does not dominate the analysis.52  In Olsen’s workflow, these 
transformations are chosen by the user in EDAnalyzer, and implemented in Excel, prior to passing 
the transformed matrix to SYSTAT for the actual eigenvector decomposition / PCA.53  

It is worth mentioning a transformation that Olsen did not do.  Olsen’s PCA method did not include 
sample normalization.  Such a transformation is commonly done in environmental and geochemical 
studies, because concentrations can vary widely due to dilution (Johnson, et al., 2007). In the case 
of many (if not most) environmental chemistry studies, concentrations will vary dramatically, often 
by orders of magnitude.  Without a sample normalization transformation, the main source of 
variability that drives differences in principal component scores will be total concentration rather 
than the ratios of key analytes. Therefore, sample normalization transformations are almost always 
employed.  The common ones are (1) transformation to percent of total concentration, and (2) 
normalization to a key analyte (a ‘normalization variable’). I discuss both of these transformations 
in my PCA book chapter (Johnson, et al., 2007).  Olsen used no such transformation in his PCA.  
As a result, there is every reason to suspect that his score plots reflect primarily the differences in 
total concentration of the samples rather than differences in the ratios of source-diagnostic analytes.  
In Olsen’s PCA, I would expect two samples with identical proportions of analytes, but which 
differed in total concentration due to attenuation, to plot a great distance from each other on a scores 
plot.   Olsen specifically stated in deposition testimony that attenuation of samples does not affect 
his PCA,54  so it appears that he is unaware of this, and is under the impression that the two 
transformations he used somehow normalize out the concentration effect.  He is wrong.  Without a 
sample normalization step, differences in total concentration due to attenuation will have a strong 
effect on PCA scores, as is demonstrated in Section 4.0 of the main report.   

A2.3 Eigenvector Decomposition and Calculation of Scores and Loadings 
The transformed matrices were then submitted to SYSTAT to perform eigenvector-decomposition, 
calculation of eigenvalues, and percent variance accounted-for, principal component loadings, 
coefficients and scores.  These were reported by SYSTAT for unrotated principal components and 
for a number of rotation schemes (e.g. varimax rotation: Kaiser, 1958).  In my reproduction of 
Olsen’s SW3 PCA run (using Matlab) I was able to match my results with those produced by 
SYSTAT.  With the exception of scores, these also matched results reported in Olsen’s results 
spreadsheets.55  

The PC scores that I calculated (using equations given in Section A1.1) and matched with the 
SYSTAT output did not match those reported in Olsen’s results spreadsheets.  This is because 
Olsen calculated scores outside of SYSTAT, in Excel using instructions defined in EDAnalyzer.  
The method for external scores calculation, was described by Olsen in his report as follows: 

“To calculate a PC score for each individual sample, the PC coefficient is multiplied by the 
standardized parameter concentration.  This is performed for all parameters (variables) in a 

                                                 
51 Use of a correlation matrix in PCA is essentially the same as doing the autoscale transform (i.e. transform all variable to μ=0, σ=1) 

prior to PCA (Johnson, et al., 2007).  In SYSTAT, the correlation matrix is the default option for matrix extraction.   Olsen  did the 
equivalent of an autoscale, by calculating principal components from a correlation matrix , but it was the correlation matrix 
calculated after his log-transformation.   

52 See Johnson, et al., 2007 for general discussion of homogeneity of variance transforms. 
53 See Olsen Deposition (9/11/08). pp. 312-313. 
54 Olsen Deposition. 9/11/08. p. 565-566. 
55 For example, Olsen’s SW3 results are reported in Olsen’s produced file: “Results_Water_0427_SW_3.xls” 
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particular PCA run.  The product values for all 25 parameters are summed to yield one PC score for 
each PC.”56   

So to reproduce Olsen’s reported scores, he says that one needs to multiply “standardized 
parameter concentration” by “PC coefficients.” The latter matrix was easy to find.  It is matrix F in 
the set of equations given in Section A1.1, and they are clearly identified in Olsen’s results 
spreadsheet.  What Olsen meant by “standardized parameter concentration” was not at all clear.  
By trial and error, I determined that what he meant was an autoscale transformation of the raw 
concentrations matrix (prior to the log transformation) with the average of reported variable 
concentrations substituted for missing data.   

I discussed the autoscale transformation (also known as the Z transform) in my PCA book chapter.  
Given a matrix X with i=1,2…m samples and j=1,2…n variables, composed of raw concentration 
data in the originally measured units (e.g. mg/L)  we calculate  the mean (x−) and standard deviations 
(sj) for each column of variables (j = 1,2…n), and then calculate the autoscaled matrix Z as follows: 

  = ij j
ij

j

x x
s
−

Z   

Olsen’s “standardized parameter concentration” matrix is Z.  Olsen’s PC scores matrix (designated So 
to differentiate it from the SYSTAT reported scores S – see Section A.1.1) is then calculated by 
multiplying the matrix Z by the SYSTAT-reported factor coefficients matrix C.  

    So  =  Z * C 
Using this equation, I did get scores that closely matched those reported in the PCA results 
spreadsheets produced by Olsen.57  But they still do not match the scores shown on Olsen’s figures 
(e.g. Figure 6.11-18 for SW3).  That is because, after calculating So Olsen did one final 
transformation.  He normalized each column of his scores matrix such that the minimum score 
would equal +1.0.  The reason given for this transformation was that “mapping was facilitated by 
rescaling the PC scores such that the lowest score for a particular PC was assigned a value of 
one.”58 If the minimum score of each column j of So is defined as min(Soj), Olsen’s translated 
scores may be calculated by:  

    STj  =  Soj + |min(Soj)| + 1 
Where the vertical brackets (| |) indicate absolute value.  It is odd that Olsen is calculating scores 
using a Z matrix from the raw concentrations matrix X, but in his transformations done prior to his 
PCA, he did not use the Z transformation (at least not applied to the raw data).  He first did a log 
transformation of X, and performed a PCA on the correlation matrix of the transformed data.  
Olsen’s scores back-calculation method is incorrect because he does not undo the log 
transformation, and instead calculates scores using a transformed matrix never calculated prior to 
PCA.  Olsen does not explain why he did this. In fact, his deposition testimony indicates that he is 
not even aware that he did this. 59     

                                                 
56 Olsen (2008a). p. 6-53. (emphasis added). 
57 In my reproduction of Olsen’s SW3 PCA run, the vast majority of PC1 and PC2 scores matched those reported by Olsen  There 

were slight differences in scores of a few samples that had missing data.   
58 Olsen (2008a). p. 6-54. 
59 Olsen deposition testimony.  9/11/08.  p. 315. Olsen states three times that the only difference between his scores and SYSTAT’s 

scores was the normalization to set the minimum for each PC at +1.0.  This is incorrect.  Olsen is apparently unaware that his 
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A2.4 Determining the Number of Significant Principal Components 
Olsen used three methods to determine the number of “significant” principal components: (1) 
cumulative percent variance, (2) scree plots, and (3) the average eigenvalue criterion.60  All of these 
were discussed above in Section A1.  Olsen’s scree plot for SW3 is shown below as Figure A5. 

 
Figure A-5.  Direct copy of Olsen’s SW3 scree-plot, indicating 5 significant principal components.  
By this criterion, samples that plot as blue dots, above the average percentage of variance (3.85) are considered 
significant and should be retained for the PCA.  Olsen only retained 2 PCs for his SW3 PCA run.  

The average eigenvalue criteria and scree plots indicated 5 principal components for Olsen’s PCA 
run SW3 (shown above) as well as for SW17, and SD1.61 For PCA run SD6, four significant PCs 
were indicated.62  For SW3, Olsen concluded that there were five “significant” principal 
components because (1) 5 PCs accounted for 74.1% of the variance in that data set; and (2) the first 
five principal components each accounted for greater than the average eigenvalue 3.85.63  But 

                                                                                                                                                                  
EDAnalyzer is doing a log transformation on the way into PCA but failing to undo it as part of the calculation of scores on the back 
end of the analysis.      

60 Olsen (2008a). p. 6-50. 
61 See Olsen (2008a)  Figure 6.11-5 
62 See Olsen (2008a)  Figure 6.11-7 
63 Olsen (2008a)  p. 6-50. Last paragraph.  See also Olsen’s Figure 6.11-1.  
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Olsen’s subsequent interpretations focused solely on the 2 principal component solution, and his 
justification is based on the percent variance criterion, as is seen in the following quotes.   

“The term “significant” in this context means that a relatively high percentage of the total variance 
is accounted for by a small number of PCs. 

Experience has shown that the objectives of PCA can be met in a data set or environmental 
system dominated by a relatively few number of source impacts that exhibit mutual correlation 
among their parameters.  In such cases a correspondingly high percentage of the total variance is 
explained by only a few PCs, typically 2-3 PCs”64 

“These results all clearly show that the top five PCs are significant (above random noise), and that 
the top two are most significant.  The results were used to establish the top 2 PCs (PC1 and PC2) as 
representing the dominant signals or signatures related to impacts in the watershed.  The dominant 
PC1 and PC2 signatures also proved to be interpretable as to source identification because they are 
so dominant – see steps 12 and 13.  On the other hand, PCs 3, 4 and 5 generally were less readily 
interpretable (because they are so much closer to random noise or background variation).”65 

In the first quote, Olsen is making the age-old mistake discussed in Section A1.3 of equating 
variance with scientific significance. Based on what “experience has shown” and the fact that he 
was not able to interpret PCs 3, 4 and 5, he concludes that the PCs 3, 4 and 5 are “closer to random” 
and from that point on in his report, Olsen addresses primarily 2 PC solutions.  As is shown in the 
table below,66 two PCs account for as little as 50%, of his four primary PCA runs.   As was 
discussed in Section A1.3, the assumption inherent in this method (and in fact the assumption 
explicitly stated by Olsen in the quote above) is that the residual variance not accounted for by 2 
PCs is random noise.  In the case of his primary SW3 PCA run, 44% of the variance in the system is 
not accounted for. 

 
This section of Olsen’s report (as quoted above) is more rationalization than analysis.  Olsen is 
trying to convince the reader that the average eigenvalue criterion is wrong, and the 43.8% of the 
variance unexplained by his 2 component SW3 model is random, based on what  “experience has 
shown” and because “PCs 3, 4 and 5 generally were less readily interpretable.”  In so doing, he 
disregards evidence of a five component system by relying solely on percent-variance.  Thus, he is 
revisiting problems pointed out more than 20 years ago by Ehrlich and Full (1987), as quoted 
below:  

                                                 
64 Olsen (2008a)  p. 6-50. 1st and 2nd paragraphs. (emphasis added). 
65 Olsen (2008a). p. 6-51. (emphasis added). 
66 Table reproduced from on page 6-52 of Olsen (2008a).  
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(1) “If eigenvalues are arranged in order of the decreasing variance accounted for (the usual case), can 
we say that the first eigenvalue is most important because it is associated with the most variance?  
The answer is, of course, no.  

(2) “A common erroneous statement made by ignorant practitioners of factor analysis is that “only the 
first k eigenvalues ... will be considered inasmuch as they account for 70% of the variance.”67   

This is also a classic example of a problem I pointed out in my book chapter.  Regardless of the 
actual complexity of a data set, and regardless of the results of goodness-of-fit diagnostics such as 
the average eigenvalue criteria, there is subtle pressure on naïve practitioners to rationalize an 
excuse such that they end up with a 2 PC system, not because of the inherent simplicity of the 
system, but because it is easier to plot 2 PCs than it is to plot 5.68 Olsen focuses his attention on the 
first 2 principal components, and then rationalizes in order to dismiss evidence of a more 
complicated system.   

As discussed in Section A1, and in several of my papers and book chapters, when faced with quite 
reasonable and common environmental chemistry data pathologies, ‘single index methods’ such as 
the percent variance criterion, the scree-test, and the average eigenvalue criterion can yield 
ambiguous and conflicting results.69  A better approach is through use of graphical diagnostics to 
evaluate goodness of fit on an analyte-by-analyte basis, in particular the Miesch coefficient of 
determination (CD) accompanied by CD scatter-plots.70   

I have reproduced Olsen’s SW3 PCA using the transformations and missing-data substitution 
criteria indicated by Olsen.  I did a singular value decomposition (svd) of the Z transform of the 
log-transformed data (which is equivalent to doing svd of the correlation matrix of log-transformed 
data) using the equations provided in Section A1.1.  I then back-calculated an estimate of the 
original 573 by 26 data matrix (based on 2 principal components), calculated Miesch CDs and 
generated a scatter-plot array for Olsen’s SW3 PC model (Figure A-6).   In order to get the results 
into the units of the original variables (mg/L for chemical species; org/100ml for bacteria) I had to 
deviate from Olsen’s back-calculation method (because he failed to undo his log-transformation in 
his calculation of scores).  I did my back-calculation by first undoing the correlation matrix (Z-
transform) and then undoing the log-transform. I first calculated the 2 principal component estimate 
of Z (  ), using only the first two columns or rows of matrices U, Λ and V:    

   573x26 = U573x2 Λ2x2 VT 2x26 

I then back-calculated an estimate of Xlog (by undoing the Z transform):   

    = ij * stdev(Xlogj)+mean(Xlogj) 

And finally to get an estimate of X (2 PC estimate of the data - in the originally reported units) I 
undid the log transformation: 

   ij  =  
The scatter-plots shown in Figure A-6 are then constructed by plotting each column X on the x-axis 
versus each column of  on the y axis.    

                                                 
67 See the full quote in Section A1.3.  From Ehrlich and Full (1987). p. 39. 
68 Johnson et al., (2007). p. 231. 
69 Johnson et al., (2007). p. 225-226. 
70 Johnson, et al., (2007). pp. 226-230. 
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Figure A-6.  CD scatter-plots showing 2 principal component goodness-fit for each of 26 analytes used in 
Olsen’s SW3 PCA (573 samples |  26 variables).     
Red squares indicate samples that were reported as “non-detect.”  For these samples, half the detection limit was substituted. 

The “CD” indicated at the top left of each scatter-plot was proposed by Miesch (1976a).  Miesch 
provided a method to calculate a coefficient of determination (CD) between each variable in the 
original matrix (X), and its back-calculated reduced dimensional equivalent $X. The formula for the 
Miesch CDs is: 

 
2 2

2
2

( )  - ( )
 

( )
j j

j
j

s x s d
r

s x
≅  

where s(x)j
2 is the variance of values in the jth column of X, and s(dj)2 is the variance of residuals 

between column j of X and column j of $X . Miesch used the ‘≅’ in this equation because he 
recognized that this was not a r2 or CD as defined for a least squares regression line of Xj vs $X j. It is 
the r2 with respect to a line of one-to-one back-calculation between Xj and $X j.  On Figure A-6, 
there is one scatter-plot for each of the 26 chemicals in the analysis.  The x axis on each plot 
(Measured Value) is actual concentration used by Olsen at the beginning of the PCA - the measured 
concentration of that analyte in the original units.  The y axis is a back-calculated estimate from a 2 
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PC model.71  Non-detects (censored data points) are indicated as red shaded squares (■).  When an 
insufficient number of principal components are retained we expect to see low CDs and great 
deviation of points away from the 1:1 fit line. 

For Olsen’s two PC model for SW3, we see a good fit for some variables (e.g. soluble reactive 
phosphorus (PSol Reac) and chloride (Cl) both exhibit CDs greater than 0.7 and a relatively uniform 
scatter about the 1:1 fit line).  Note also that all three forms of phosphorus in Olsen’s 2 PC model 
exhibit CDs ≥ 0.59.  Olsen’s 2 PC model does a relatively good job of back-calculating phosphorus.  
But Olsen’s ultimate opinion of poultry impact is based on more than just phosphorus.  Olsen 
opines that poultry-waste disposal is “by far the dominant contamination source in the IRW” and 
“In the PCA, the chemical and bacterial composition of poultry-waste creates a distinct chemical 
signature that contains both phosphorus and bacteria.”72 Elsewhere, Olsen says that poultry-waste 
is also characterized by copper (CUT) arsenic (AST) and zinc (ZNT).73 If we look at all contaminants 
that Olsen suggests should be associated with poultry waste (P, CUT, AST, ZNT, COLIFORMS, 
ECOLI, ENTERO, and FECAL) we see a very poor fit with this PCA model for all except 
phosphorus. It is especially poor for bacteria.  E. coli, enterococcus, coliforms and fecal coliform all 
exhibit CDs < 0.2 and an extremely poor fit with respect to the 1:1 line that bisects each graph.    
Olsen’s 2PC model cannot accurately back-calculate any of the co-contaminants that he suggests 
should be associated with poultry derived phosphorus.   

A2.5 Interpretation of Results 
The real key to any PCA-based data analysis is the logic of one’s interpretations on the back end of 
an analysis.  As discussed in Section A1.3 Gould’s primary objection to factor analysts as applied 
by psychometricians, was not the mathematics, but rather the interpretation of the results; and 
specifically (1) the practice of reification (assuming that a principal component necessarily 
represents some real entity such as “intelligence” or “poultry litter”) and (2) the a priori prejudices 
of its practitioners; and (3) how those a priori prejudices predestined their interpretation.  As will be 
shown below and in the main body of this report, Olsen’s PCA interpretation revisits all of these 
problems.   

A2.5.1 PC Loadings and Coefficients 
Olsen began his interpretation by plotting PC loadings as bar graphs and observing which analytes 
had the highest loadings.  A direct copy of Olsen’s Figure 6.11-10 (loadings bar graph for SW3) is 
included in the main body of this report, as Figure 2-2.  Based on that graph, Olsen reported a 
similarity between the PC1 loadings graph and the composition of poultry-waste impacted water74 
and that led to one of Olsen’s primary conclusions in his PCA: “PC1 has been identified as 
associated with poultry waste.”75 Olsen follows similar logic with respect to PC276  and reported 
that “PC2 has been identified as associated with WWTP effluent.”77 

Olsen is essentially telling us that the bar graph in the left panel of his Figure 6.11-10 (Figure 2-2 of 
this report) looks like poultry-waste impacted water and that the bar-graph on the right looks like 

                                                 
71 An interesting side note: Olsen was aware of the CD scatter-plot method (See Olsen Deposition 9/11/08 Exhibit 17 – 4/29/08 email 
from Chappell to Olsen).  
72 Olsen (2008a). p. 1-2 (3rd bullet). 
73 Olsen (2008a).  p. 6-27. 
74 Olsen (2008a). p. 6-57. 2nd paragraph. 
75 Olsen (2008a). p. 6-57. 3rd paragraph. 
76 Olsen (2008a). p. 6-57. 2nd paragraph. 
77 Olsen (2008a). p. 6-57. 3rd paragraph. 
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WWTP effluent.   For the reasons that follow, it is impossible to support such conclusions with 
anything but conjecture. 

When Olsen tells us that the PC1 loadings bar graph looks like “runoff from fields with poultry 
waste” he is talking about 89 ‘edge of field’ samples that he believes are impacted primarily by 
poultry.  But in deposition testimony on September 10, 2008, Olsen acknowledged that these 
samples were impacted by “both poultry and cattle waste”78 and that he did not try to document the 
extent to which his 89 edge of field samples were impacted by cattle.79  Olsen’s PCA interpretation 
presumes that his edge-of-filed samples are representative of a single source (poultry) while 
acknowledging elsewhere that they are not. 

The second sample type that Olsen says shows similarity to his PC-1 loadings bar graph is 
“leachate from poultry waste.”80  He is referring to data from synthetic precipitation leachate 
procedure (SPLP) experiments, which CDM conducted for both cattle manure and poultry litter.  
The data from these SPLP experiments are reported in Tables 6.4-2a and 6.4-2b of Olsen’s report.  
With respect to PC1 loadings bar graph, Olsen points out that 17 parameters had loadings greater 
than 0.5 and that all of these parameters have high concentration in leachate from poultry waste. 81   
But if one carefully compares these 17 parameters to Olsen’s Table 6.4-2a, ten of these 17 
parameters were not even measured in SPLP samples.82  The SPLP procedure requires filtering83 so 
only dissolved metals and dissolved phosphorus were reported.  The following SW3 variables, with 
loading greater than 0.5,  were not measured in Olsen’s poultry leachate experiments: Total 
Aluminum, Total Arsenic, Total Copper, Total Iron, Dissolved Potassium, Total Magnesium, Total 
Manganese, Total Nickel, Total P, and Total Zinc.  The distinction between dissolved and total 
analyte measurements is not trivial.  These are fundamentally different measurements that reflect 
concentrations associated with the particulate fraction versus the dissolved phase.  In particular, 
total phosphorus (an analyte of primary concern in this litigation) is strongly tied to total suspended 
solids measurements (see Section 4.2) but is not measured in the SPLP data.  Even if the PC 
loadings and the SPLP chemical data were in the same units, the lack of total P data in the SPLP 
results makes it such that Olsen’s PCA and SPLP data sets are not comparable.   

But moving beyond issues of data comparability and Olsen’s presumption that edge-of-field 
samples represent impact from a single source, his argument is still fundamentally flawed.  It is 
based on a comparison of loadings (which are reported in abstract units of correlation coefficients of 
a log-transformed data matrix) to the chemical data in Table 6.4-2a and 6.4-2b (which are reported 
in units of concentration - mg/L or organisms/100mL).  This is an apples and oranges comparison, 
and was recognized as such more than 30 years ago, by a geochemist with the USGS: A.T. Miesch: 

“Models of the type represented … are difficult to interpret because the factor scores 
[Miesch’s ‘scores’ are ‘loadings’ in Olsen/SYSTAT terminology] are normalized and 
therefore dimensionless.”84  

Olsen’s loading graphs have the same problem.  The loadings are in abstract, unitless metric of a 
correlation matrix of log–transformed data.  This problem of trying to interpret scores and loadings 
in abstract units was ultimately the impetus for Miesch (1976a) outlining methods of back-
calculation, to allow evaluation of scores and loading in the originally measured units.   

                                                 
78 Olsen Deposition. 9/10/08. p. 61. Lines 19-25. 
79 Olsen Deposition. 9/10/08. p. 62. Lines 7-13. 
80 Olsen (2008a). p. 6-57. 2nd paragraph. 
81 Olsen (2008a). p. 6-57. 2nd paragraph. 
82 Compare the analytes in Olsen’s  
83 Olsen (2008a).  p. 6-55. 
84 Miesch (1976a). p. G5. 
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Another issue is that Olsen’s logic for PC-1 being poultry waste is based in part on the observation 
that the vast majority of PC-1 loadings are greater than zero.  This comes as no surprise to anybody 
who has looked at chemical data using PCA-based methods.  Given compositional data85 the first 
principal component will always yield primarily positive loadings.  The explicit constraint of PCA, 
that all principal components are mutually orthogonal (i.e. at a 90 degree angle with respect to all 
other principal components) means that loadings on PC2, PC3, etc. will necessarily have more 
negatives.  That in turn means that it is impossible to interpret loadings bar graphs as source 
compositions unless source fingerprints are uncorrelated. This difficulty is reflected in Olsen’s 
quote above.  He interprets PC1 loadings like a chemical bar graph, and it seems reasonable because 
the majority of bars are positive.  The PC2 interpretation is a bit more difficult, but he manages an 
argument based on an observation of seven out of 26 parameters with loadings > +0.5 (while 
avoiding any discussion of the meaning of a -0.33 loading for Total Aluminum, or a -0.31 loading 
for Enterococcus).  He does not attempt to interpret principal component loadings beyond PC2, and 
in fact he points to the difficulty in interpreting higher numbered PCs as part of his rationale for 
dismissing evidence of five significant PCs.   

As it turns out, the difficulty in interpreting negative loadings was also recognized by Miesch more 
than 30 years ago: 

“Composition scores for the first axis of a principal component model tend to be all 
nonnegative, as do the composition loadings of the first end-member.  The scores and 
loadings of subsequent axes tend to be positive and negative in about equal number.”86 

This led Miesch to develop an extension to PCA: oblique rotation with explicit non-negative 
constraints. This is the fundamental basis of a number of receptor modeling techniques.  

Ultimately, Olsen is trying to interpret orthogonal principal component loadings (reported in 
abstract units) as one might interpret bar graphs of chemical compositions.  This is essentially 
reification – equating a principal component with a “thing” with physical or chemical meaning.  
Olsen is taking abstract axes, defined in multivariate space, and assigning them a chemical/physical 
interpretation in terms of source.  Reification was one of the major problems in implementation of 
factor analysis by early 20th century psychometricians (see section A1.4.2).  Where Charles Pearson 
and Cyril Burt equated their Factor 1 with the innate general intelligence of a child, Olsen is 
equating PC1 with a poultry signature and PC2 with WWTP signature.  What’s more, Olsen’s 
reification of PC1 is not limited to the two paragraphs on page 6-57 of his report.  He has 
consistently made similar statements in testimony before and after his May report.87 Olsen reifies 
PC-1 as poultry, PC-2 as WWTP and justifies that interpretation with a poorly reasoned, apples-to-
oranges comparison of loadings to chemical data from samples of indeterminate source, and/or 
mismatched analytes.  

A2.5.2 Score Plots and Source-Impact Thresholds 
Based on his theory that PC1=poultry and PC2=WWTP, Olsen ultimately classified each sample in 
his PCA with respect to whether it reflected a predominant impact by poultry-waste or WWTP 
effluent.  The interpretations described in his report were made primarily with respect to PCA run 
                                                 
85 Chemical data is ‘compositional data’ and is always reported by a lab is non-negative values (e.g. phosphorus  concentrations are 

never reported as -20 mg/L). 
86 Miesch (1976a). P. G10. 
87 In deposition testimony prior to the preliminary injunction (PI) hearing, Olsen referred to “the chicken signature, which is principal 

component 1” (p. 102 lines 17-18 – see also p. 264 line 22).  In testimony at the Preliminary Injunction Hearing itself, Olsen 
repeatedly refers to ‘principal component 1’ as ‘the poultry signature’ and ‘principal component 2’ as the ‘waste water treatment 
plant signature.’   See PI hearing transcript, Volume III;  pp. 819-842, and in particular, p. 824; lines 16-19.  Olsen 9/11/08 
deposition testimony (p. 337 lines 12-14). 
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SW3.  Olsen presented PC1 vs. PC2 score plots as Figures 6.11-18a through 6.11-18e of his report 
(Figures 6.11-18a and c are reproduced in the main body of this report as Figures 2-1 and 2-3).     

Figure 6.11-18c (Figure 2-3 of my main report) was the scores plot with the two red ovals 
identifying the inferred limits of Olsen’s supposed primary sources: “Poultry-waste Dominant 
Impact” and “WWTP Dominant Impact.”  If we look at that scores plot in the context of the data 
pathologies discussion (Section A1.2) we see a major problem with Olsen’s interpretation.  The 
SW3 data set appears to be more gradational than “hard-clustered.”  Yet Olsen is establishing hard 
cluster boundaries within this system.  He established a 1.3 PC1 poultry impact threshold, and in so 
doing, he drew a hard partition (a vertical line) through the densest clustering of samples.  Another 
hard partition threshold, at PC2=4.7 demarcates his dividing line for WWTP impact. 88   

In deposition, Olsen was asked to explain this hard-partition, and in particular the 1.3 PC1 criterion.  
Olsen responded by saying that samples with PC1 scores below the 1.3 threshold may also be 
impacted by poultry and that it his opinion, any sample with a PC1 score>1 is potentially impacted 
by poultry waste.89 Olsen chose his threshold at 1.3 PC1 in order to be “conservative.”90   

Similarly Olsen indicated in deposition testimony that the text of his report needed clarification with 
respect to its implication that PC1>1.3 indicates a predominant poultry-waste impact.  This, he says 
is not the case.91 A PC1 score > 1.3 indicates (in Olsen’s opinion) that a sample is impacted by 
poultry waste to some degree.  But to be considered “predominantly” impacted by poultry-waste, a 
sample must exhibit a PC-1 score greater than 1.3 and a PC2 score less than 5.92    Given that 
PC2=4.7 is his threshold for WWTP dominance, there is an overlap93 in Olsen’s WWTP-dominant 
versus poultry-dominant areas.  For samples that plot within this PC2 overlap region (between 4.7 
and 5.0) there is some uncertainty as to which source Olsen would consider to be “dominant.”   

In Figure A-7 below, I have annotated Olsen’s SW3 scores plot to show his two thresholds 
(PC1=1.3 and PC2=4.7) and I have added a gradational red and blue shaded regions to show the 
range of PC1 and PC2 scores where Olsen’s poultry and WWTP classifications are uncertain. 

                                                 
88 Olsen (2008a). p. 6-59 to 6-60. 
89 Olsen Deposition. 9/11/08.  p. 333. Lines 3-21.   
90 Olsen Deposition. 9/11/08.  p. 330 (Line 19) to 331 (Line 20).  See also, quote in Section 2.3.1 of the main report. 
91 Olsen Deposition. 9/10/08.  p. 277. Lines 15-25. 
92 Olsen Deposition. 9/10/08.  p. 278 (Line 22) to 279 (Line 21). But Olsen still qualifies this by noting that there were two “cow 

samples” that fit the criteria of  this new rule, and that those samples need more investigation. 
93 Olsen Deposition. 9/10/08.  p. 279 (Line 7-13). 
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Figure A-7.   PCA scores plot for SW3, showing Olsen’s interpretation as modified in deposition testimony.  
Olsen’s deposition testimony acknowledged uncertainty in PC1 threshold (gradational red shading) and PC2 thresholds (gradational 
red-to-blue shading) and contradictions to his poultry and WWTP impact classifications (WWTP, Tahlequah and cow-pasture (CP) 
samples).  

So Olsen’s testimony is that the 1.3 PC1 and 4.7 PC2 values are not hard partitions.  There is a 
gradient: a region of uncertainty.  He claims that he could have set the poultry impact threshold 
even lower than 1.3, but decided to be “conservative” and set it at the upper end of this gradient.94  
This purported effort to be “conservative” implies that if a sample has a PC1 score greater than 1.3, 
then it definitely must be impacted by poultry waste.  When asked about this in deposition, Olsen’s 
response was not exactly unequivocal.   

Q Okay. For purposes of your principal component analysis work in this case and your opinions about 
the source of contamination in particular samples, do I understand correctly that you've concluded that 
all samples with a Principal Component 1 score of greater than 1.3 are in your opinion impacted 
predominantly by poultry litter?  
A There may be a few minor exceptions in there. I'd have to go review it. There's some question about the 
CP  samples[95] that we collected this morning, so, you know, that needs further analysis. So there's -- and 
a few samples I couldn't verify locations of so I kind of excluded them, so there's a very, very few, but 
generally that statement is true.  

                                                 
94 Olsen Deposition (9/10/08).  pp. 218 (Line 17) to 219 (Line 6). 
95 “CP samples” are cow-pasture edge-of-field samples. 
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Q Well, Dr. Olsen, in your report you said that a Principal Component 1 score of 1.3 or greater is 
consistent with and supports your opinion that that sample reflects contamination from poultry litter; is 
that right?  
A Yeah, and I need to clarify that a little bit more. There were some -- in that particular count,   
I included inadvertently some of the wastewater treatment plant discharges, so I need to take that out of 
those percentages and analysis.   
Q I didn't really ask about percentages so I'm confused as to exactly what you are talking about.   
What are you talking about?   
A There were three wastewater treatment samples that were scored and typically those had a principal 
component score of above 1.3, and I would say that those probably weren't contaminated by poultry. 96 

The “few minor exceptions” cited in quote above are neither few nor minor.  As it turns out, every 
sample collected by Olsen to characterize sources other than poultry yielded PC1 scores greater 
than 1.3.  I have plotted a number of these on Figure A-7.  The brown triangles are the “wastewater 
treatment plant discharge” samples referenced in the quote above.  All four yielded PC1 scores 
greater than 1.3.  Three of these were actual effluent samples from the Siloam Springs, Rogers and 
Springdale.  They all plot within Olsen’s ‘WWTP impact dominant’ area on Figure A-7, but they 
also have PC1 scores greater than 1.3. As such, they should be classified by Olsen as ‘poultry 
impacted.’ But with regard to these three samples, Olsen testified as follows: 

“what I’m just trying to do is clarify the text there when I said that anything above 1.3 had poultry 
contamination … that’s probably not true, and so I’m just trying to clear that up, and these are three 
examples”.97   

In addition, note on Figure A-7 that Olsen’s fourth WWTP sample (Lincoln) does not even plot 
within his ‘WWTP dominant impact’ area, but rather within his ‘poultry-waste impact dominant’ 
area (Section 3.2).    

The two yellow circles on Figure A-7 are the ‘CP samples’ referenced in Olsen’s quote above. 
These are edge-of-field samples were collected from a cow-pasture (CP) where poultry litter had 
never been applied.98  Both plot within Olsen’s ‘poultry-waste impact predominant’ area (Section 
3.3).   

The green squares are not among the ‘few minor exceptions’ discussed in Olsen’s quote above, but 
they deserve mention here.  These six samples are base-flow stream-water samples from Tahlequah, 
Oklahoma.  All six yielded PC1 scores above 1.3, but given that Tahlequah is an area of zero 
poultry house density, Olsen concedes that they too are not impacted by poultry99 (Section 3.1).  

There were also numerous high-flow and base-flow stream samples in Olsen’s SW3 PCA run that 
were collected in areas of low poultry-house density, but which Olsen’s PCA classification would 
indicate are poultry-impacted (see Sections 3.4 and 3.5). 

Regardless of all the technical/methodological problems discussed in this report, one needs look no 
farther than Figure A-7 to see that Olsen’s poultry and WWTP signature criteria are meaningless.  
We see a sample collected to characterize WWTP effluent that plots outside of his ‘WWTP 
dominant impact’ area (and within his ‘poultry-waste impact dominant’ area).  We see samples with 
PC1 scores less than 1.3 that Olsen believes may be impacted by poultry.  We see samples with PC1 
scores greater than 1.3 that Olsen concedes are not impacted by poultry (Figure A-7).  Olsen’s PC1 
and PC2 thresholds are entirely arbitrary.    

                                                 
96 Olsen Deposition. 9/10/08.  p. 274. (emphasis added). 
97 Olsen Deposition. 9/10/08.  pp. 276-278. 
98 See Field CDM/Lithochimea field notes from March 31, 2008 (STOK005374). 
99 Olsen Deposition 9/11/08.  p. 405. 
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A2.5.3  Spatial Analysis 
The basis of Olsen’s establishment of thresholds for PC1 (poultry impact) and PC2 (WWTP impact) 
was his “spatial analysis” of principal components scores.  His rationale for that exercise was that 
he wanted to evaluate the viability of that interpretation in context of independent data.  The basic 
idea is that methods such as principal components analysis are not classical statistical methods that 
allow one to test a formal hypothesis in terms of statistical probabilities.100  Rather they are 
‘exploratory data analysis’ methods that expedite the process of forming (rather than testing) a 
hypothesis that can explain the observed data.  For an interpretation of a PCA to be viable, it must 
be consistent with other lines of evidence.  Having formed a hypothesis that PC1 equals poultry 
waste, and that PC2 equals WWTP effluent, Olsen needed to test it against purported ground truth 
data (e.g. locations of waste water treatment plants, areas of high poultry house density, areas of 
low poultry house density, etc.).101  Olsen describes his spatial analysis in general, in the following 
quote:   

“As previously discussed in Section 12, a spatial evaluation was performed to evaluate the 
individual sample PC scores in relation to distance from source, sample group, sample 
condition and reference locations.  In this step the individual PC scores are evaluated to 
determine the magnitude of impact or contamination from sources across the basin.”102 

With respect to his PC1 poultry waste threshold (PC1>1.3) Olsen presented this discussion of his 
spatial analysis to support that value:   

“The value [the 1.3 PC1 threshold] was selected by examining the locations and scores of samples, 
particularly the scores of reference samples and samples in low poultry house density areas.  In 
summary, the samples with PC1 scores below approximately 1.3 include all samples from reference 
locations (six total), 9 out of 10 samples from HFS30 (small watershed location with low poultry 
house density) and 10 out of 11 samples from HFS28A (small watershed with low poultry house 
density).  The one sample from HFS30 and the one sample from HFS28A with higher PC1 scores 
were collected during extreme flow events.  Overall 441 of the 573 samples (77%) had PC1 scores 
higher [than] 1.3 and show some poultry contamination.”103 

So, in terms of his spatial analysis to evaluate the efficacy of his PC1 threshold, the primary information 
relied upon by Olsen was poultry house density data.  This data was presented by Olsen in the form of a map 
(Figure 2.5-1 of his report: reproduced below as Figure A-8).   The map was presented in context of 
identifying the locations of groundwater samples, but curiously it was never presented as the base 
map for plotting his PCA scores.  Instead, a generic base map was used.  The poultry house density 
data used to generate the map shown below were produced by plaintiff’s experts.  As such it was 
relatively straightforward to plot Olsen’s PCA results over his poultry-house density base-map (and 
this is done on a number of figures in the main body of this report). 

Note in the quote above, that Olsen does not cite an exhaustive list of samples that he evaluated in 
context of poultry house density.  He cites only 25 samples from five sampling stations, and these 
he says are consistent with his PC1 interpretation.  But Olsen’s SW3 PCA run included 573 
samples, from 175 different sampling locations.  Olsen’s discussion on page 6-60 gives the clear 
impression that his 1.3 PC1 poultry-impact criterion is consistent with poultry house density data, 
but as pointed out in the main body of this report (Sections 2.3.1 and 3.0) this is not the case. 

                                                 
100 See Johnson, et al. (2007).  Section 7.1.1 Philosophy and Approach: A Case for Exploratory Data Analysis 
101 Olsen (2008a). p. 6-34: Steps 12 and 13.   
102 Olsen (2008a). p. 6-59. 
103 Olsen (2008a). p. 6-59 to 6-60. 
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Figure A-8.  Poultry house densities as shown on Olsen’s Figure 2.5-1. 
Figure reproduced as a direct copy of Olsen Figure 2.5-1. Data reportedly from Fisher’s 2006 data. 

A2.5.3 The Red-Dot / Green-Dot Map 
The bottom line map used to illustrate Olsen’s interpretation of samples that have been impacted by 
poultry-waste, was his Figure 6.11-23 (reproduced in the main body of this report as Figure 2-4).    
This map then led directly to Olsen’s most important conclusions/opinions coming out of his PCA: 
that 78% of surface water locations in the IRW show some poultry contamination.104  Olsen’s red-
dot / green-dot maps and the conclusions drawn from them are critically reviewed in the main body 
of this report.   

                                                 
104 Olsen (2008a). p. 6-60. 2nd paragraph, as corrected by Olsen’s errata (Olsen, 2008b – page 7). 
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Morrison and B. Murphy, eds.). Academic Press. San Diego.  pp. 461-515. 

Johnson, G.W. 2002. Forensic Analysis. In: Encyclopedia of Environmetrics (El-Shaarawi and 
Piegorsch, eds.) Wiley, Chichester. Vol. 2, 796-806. 

Magar, V.S., J. Ickes, J.E. Abbott, R.C. Brenner, G. S. Durell, C. Peven-McCarthy, G.W. 
Johnson, E.A. Crecelius, and L.S. Bingler.  2002.  Natural Recovery of PCB-
Contaminated Sediments at the Sangamo-Weston/Lake Hartwell Superfund Site.  In R.E. 
Hinchee, A. Porta, and M. Pellei (Eds.), Remediation and Beneficial Reuse of 
Contaminated Sediments, 1(3), 413-418.  Battelle Press, Columbus, OH. 

 
Selected Presentations at Professional Meetings / Proceedings Contributions  
Johnson, G.W. (2006).  Data analysis: PCB congener profiles.  Invited Presentation. NIEHS/EPA 

Fourth PCB Workshop.  Zakopane, Poland, September 6 - 10, 2006. 

Hermanson, M. H. Johnson, G. W., Carpenter, D.O. (2006). Routes of Human Exposure to PCBs 
in Anniston, Alabama. ACS Division of Environmental chemistry, 232rd National 
Meeting, 46(2): 1117-1122. 

Hermanson, M. H. Johnson, G. W., Matthews, K., Isaksson, K., Teixeira, C., van de Wal, R. S. 
W., Muir, D. C. G. (2005).  Historic PCB congener profiles in an ice core from Svalbard, 
Norway.  Organohalogen Compounds  67, 936-939. 

Johnson, G.W., (2005). Keynote Speaker: Identifying Polychlorinated Biphenyl Sources in 
Environmental Media.  The 15th Annual Goldschmidt Conference: University of Idaho, 
Moscow, Idaho, USA, May 20 – 25, 2005. 

Ramos, S., Rohrback, B., Johnson, G., and Kaufman, R. (2005).  Using gas chromatography and 
curve resolution to quantify contributions to mixed crude oils.  Pittsburgh Conference 
on Analytical Chemistry and Applied Spectroscopy.  Orlando, FL. Feb. 27 – Mar. 4, 
2005. 

Johnson, G.W. (2005). Distinguishing Between Two Types of Aroclor 1254: Considerations for 
Environmental Forensics Investigations.  Society of Environmental Toxicology and 
Chemistry 26th Annual Meeting.  Baltimore, MD.  November 13-17, 2005.   

Johnson, G.W. Gary, A.C., and Ekart, D.D. (2005). A New Approach to the Analysis of 
Assemblages within Biostratigraphical Data.  North American Micropaleontology 
Section of the Society for Sedimentary Geology (NAMS-SEPM) International 
Conference on Geological Problem Solving with Microfossils.  Rice University. 
Houston, TX.  March 6-11, 2005. 
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PUBLICATIONS / PRESENTATIONS (Continued) 
Selected Presentations at Professional Meetings / Proceedings Contributions 

(Continued) 
Johnson, G.W., V.S. Magar, J.F. Quensen, III ,G. Durell, and R. Brenner. 2003. PCB Source and 

Natural Alteration Patterns in Sediments of Lake Hartwell and Twelve-Mile Creek, South 
Carolina. International In-Situ and On-Site Bioremediation Symposium. Orlando, 
Florida. June 2-5, 2003.   

Nash, G.D. and G.W. Johnson. 2002. Soil Mineralogy Anomaly Detection in Dixie Valley, 
Nevada using Hyperspectral Data. Proceedings: Twenty-Seventh Workshop on 
Geothermal Reservoir Engineering, Stanford University, January 28-30, 2002.   

Ickes, J., Brenner, R. Magar, V.S., Durrell, G., Johnson, G. Crecelius, E., Abbott, J., Peven 
McCarthy, C., and Bingler, L., 2001. Natural Recovery of PCB-contaminated sediments 
at the Sangamo-Weston/Lake Hartwell Superfund Site.  In: (Leeson, Foote, Banks, and 
Magar, eds.) Wetlands and Sediments. The Sixth International In-Situ and On-Site 
Bioremediation Symposium.  6(5).  Battelle Press. pp. 231-236.  

Johnson, G.W., and Chiarenzelli, J.C. 2000. Implications of volatilization on PCB source profile 
interpretation. Society of Environmental Toxicologists and Chemists 21st Annual 
Meeting.  Nashville, Tennessee. November 12-16, 2000. Programs with Abstracts. 14. 

Johnson, G.W. and Quensen, J.F. III. 2000. Implications of PCB dechlorination on linear mixing 
models. Organohalogen Compounds.  45: 280-283.  Presented at 20th International 
Symposium on Halogenated Environmental Organic Pollutants & POPs (Dioxin 2000). 
Monterey, California. August 13-17, 2000. 

Johnson, G.W. 1999. Unmixing sources of polychlorinated biphenyls in San Francisco Bay. 
Association of Environmental Health of Soils, Conference on Contaminated Soils and 
Waters, Oxnard, California, March 8-11, 1999. 

Johnson, G.W. and G.D. Nash. 1998. Unmixing AVIRIS hyperspectral data from Dixie Valley, 
Nevada. In: Proceedings, Twenty-Third Workshop on Geothermal Reservoir Engineering, 
Stanford University, 23: 240-245. 

Moore, J.N., T.S. Powell, D.I Norman, and G.W. Johnson.  1997. Hydrothermal alteration and 
fluid-inclusion systematics of the reservoir rocks in Matalibong-25, Tiwi, Philippines. 
Twenty Second Annual Workshop: Geothermal Reservoir Engineering. Stanford 
University.  22: 447-456. 

Schumacher, D., G.W. Johnson and R. Ehrlich. 1996. Statistical unmixing of crude oil 
geochemical data as a method for assessing reservoir compartmentalization: An example 
from the Eugene Island Block 330 Field, Offshore Louisiana.  American Association of 
Petroleum Geologists/EAGE Research Symposium on Compartmentalized Reservoirs.  
The Woodlands, Texas. October 20-23, 1996. 

Martin, R.E., Neff, E., Johnson, G.W., and Krantz, D.E. 1991.  Ecostratigraphic datums and 
sequence stratigraphy: application to the Marine Quaternary.  Society of Economic 
Paleontologists and Mineralogists/American Association of Petroleum Geologists Special 
Session "Biostratigraphic Aspects of Sequence Stratigraphy". American Association of 
Petroleum Geologists Bulletin 75: 630. 
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PUBLICATIONS / PRESENTATIONS (Continued) 
Selected Presentations at Professional Meetings / Proceedings Contributions 

(Continued) 
Johnson, G.W., Johnson, B., Wehmiller, J.F., and Martin, R.E. 1989. High resolution 

biostratigraphy and aminostratigraphy of ODP Hole 625B; Northeast Gulf of Mexico:  Am. 
Assoc Petrol. Geol. Bull. 73: 368-369.  

Martin, R.E., and Johnson, G.W. 1989. Comparative ecostratigraphy of the Pleistocene: ODP Site 
625 and DSDP Site 502. American Association of Petroleum Geologists Bulletin 73: 387. 

Johnson, G.W., and Martin, R.E. 1987. Quaternary planktonic foraminiferal paleoecological 
models: Northeast Gulf of Mexico: In: Barnette, S.C. and Butler, D.M., eds., Innovative 
Biostratigraphic Approaches to Sequence Analysis: New Exploration Opportunities.  
Society of Economic Paleontologists and Mineralogists, p. 83.  Also: American Association 
of Petroleum Geologist Bulletin 72: 202 (March, 1988). 

 
Technical Reports 
Johnson, G.W., Gary, A.C. and Ekart, D. (2006) TACSWorks 4.0 Quick Start User’s Guide 

(Version 4.0).  Technical Alliance for Computational Stratigraphy. Energy & Geoscience 
Institute at the University of Utah. April, 2006. 

Johnson, G.W., Gary, A.C. and Ekart, D. (2003) TACSWorks 2.0 Quick Start User’s Guide 
(Version 2.0).  Technical Alliance for Computational Stratigraphy. Energy & Geoscience 
Institute at the University of Utah. December, 2003. 

Johnson, G.W. (2002). Evaluation of Sources of PCBs in Sediments Adjacent to the Former 
Rockwell Facility - Allegan, Michigan. Energy & Geoscience Institute at the University 
of Utah. Technical Report 01-00059-5000-50500961. September, 2002. 

Johnson, G.W. (2002). Summary Report: A Feasibility Study to Evaluate Statistical Unmixing as 
a Stratigraphic Tool. Energy & Geoscience Institute at the University of Utah. Technical 
Report No. 5000-50500865-06-2002. June, 2002. 

Johnson, G.W., Ekart, D. and Gary, A.C. (2002) TACS Bioslot Software User’s Guide (Version 
1.1β) Energy & Geoscience Institute at the University of Utah. Technical Report 
50500625-05-2002. May, 2002. 

Sikora, P.J., Skowron, G., and Johnson, G. (2001). Regional Biofacies Study for the Ekofisk 
Field, Norwegian North Sea.  Energy & Geoscience Institute at the University of Utah. 
Technical Report No. 01-00059-50500674-03-2001. 

Magar, V., Durrell, G., Johnson, G., Crecelius, E., Ickes, J., Abbott, J., Peven-McCarthy, C., and 
Brenner, R.  (2000). Natural Recovery of Persistent Organics in Contaminated Sediments 
at the Sangamo-Weston/Twelve Mile Creek/Lake Hartwell Superfund Site. Technical 
Report submitted to USEPA (USEPA Work Assignment No. 4-30 - Contract No. 68-C5-
0075).  September 29, 2000.  Battelle, Columbus, Ohio. (EGI subcontractor to Battelle). 

Collister J.W., Johnson G.W., Ehrlich R., Shlygin D. and Wavrek D.A. (1998). Geology and 
hydrocarbon potential of the North and Central Caspian Depressions. Volume 3. Organic 
Geochemistry. EGI Technical Report 5-20894-12-98. 
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PUBLICATIONS / PRESENTATIONS (Continued) 
Technical Reports (Continued) 
Collister J.W., Ehrlich R., Dahdah N.F., Curtiss D.K., Johnson G.W. and Shlygin D. (1998). 

Pliocene “Red Series” Reservoir Characterization and Organic Geochemistry of 
Hydrocarbons and Source Rocks, Western Turkmenistan Onshore and Offshore Shelf.  
Volume III: Properties and Origins of Oils and Gas.  EGI Technical Report No. 98-5-
20982. 

Collister J.W., Johnson G.W., and Ehrlich R. (1997). Chemical fingerprinting of geochemical 
data to assess reservoir compartmentalization: An example using Yemen crude oils.  EGI 
Technical Report 97-2-20972. 

Collister J.W., Ehrlich R. and Johnson G.W. (1997). Petroleum Systems of the Timan Pechora 
Basin, Russia.  Volume 3a: Organic Geochemistry.  EGI Technical Report No. 97-05-
20940. 

McLaren/Hart Environmental Engineering Corp. (1994).  Expanded Hydrogeological Report for 
the BP Oil, Inc. Marcus Hook Refinery and Adjacent Area.  Prepared for B.P. Oil Inc., 
Marcus Hook, PA.  Prepared by G.W. Johnson & T.E. Rodriguez.  November, 1994. 

Perception and Decision Systems, Inc. (1994). A Major Ion Hydrochemical Model for 
Groundwater at the Wake/Chatham County Preferred Site: N.C. Low-Level Radioactive 
Waste Disposal Facility. Prepared for RUST Environment and Infrastructure, Aiken, SC. 
Prepared by G.W. Johnson and R. Ehrlich. 

McLaren/Hart Environmental Engineering Corp. (1993). RCRA Facility Investigation Task V: 
RFI Report: Marcus Hook Processing, Inc., Marcus Hook Pennsylvania.  Prepared for 
Marcus Hook Processing, Inc. Valley Forge, PA. Revision 1.0: .  Prepared by G.W. 
Johnson & T.E. Rodriguez.  September, 1993.   

McLaren/Hart Environmental Engineering Corp. (1992). RCRA Facility Investigation Task I: 
Description of Current Conditions.  Marcus Hook Processing, Inc., Marcus Hook 
Pennsylvania.  Prepared for Marcus Hook Processing, Inc. Valley Forge, PA. Revision 
1.0:   Prepared by G.W. Johnson & T.E. Rodriguez.  July, 1992.   

McLaren/Hart Environmental Engineering Corp. (1992).  Site Characterization and Free 
Product Recovery Report. Rollins Truck Leasing, Harrisonburg, Virginia.  Prepared for 
McDonnell Douglas Truck Services, Fort Washington, PA. Prepared by G.W. Johnson & 
Z. Karpa. May, 1992.  

Theses/Dissertations 
Johnson, G.W. 1997. Application of Polytopic Vector Analysis to Environmental Geochemistry 

Investigations. Ph.D. Dissertation. Department of Geological Sciences. University of South 
Carolina. Columbia, S.C. 244 pp. 

Johnson, G.W. 1988. Pleistocene Planktonic Formaminiferal Biostratigraphy and Paleoecology: 
Northeast Gulf of Mexico. M.S. Thesis. University of Delaware.  Dept. Geology.  
University of Delaware, Newark, DE.  256 p. 
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CURRENT UNIVERSITY FUNDING  
Project: Biostratigraphic Integration Interpretation Workspace Phase 2 
Funding Agency: British Gas and BP-Amoco. 
Awardee: University of Utah, Anthony C. Gary, P.I.; Glenn Johnson, Co Investigator 
Project Dates: January 1, 2008 – December 31, 2008 (Extended into 2009). 
Budget: $65,000 
Status:  Beta Softwre to be Delivered in December, 2008. 
 
Project: Integrated Forensics Approach to Fingerprint PCB Sources using Rapid Screening 
Characterization (RSC) and Advanced Chemical Fingerprinting (ACF) 
Funding Agency: Department of Defense (DoD) Environmental Security Technology 
Certification Program (ESTCP) 
Awardee: Space and Naval Warfare Systems Command (SPAWAR), James Leather, P.I.; Glenn 
Johnson, Co Investigator, University of Utah under subcontract to SPAWAR. 
Project Dates: March, 2008 – February, 2011. 
Budget: FY08: $69,159 
Status:  Project Awarded – FY08 work under way. 
 
RECENT UNIVERSITY FUNDING 
Project: Biostratigraphic Integration Interpretation Workspace 
Funding Agency: Technical Alliance for Computational Stratigraphy 
Awardee: University of Utah, Anthony C. Gary, P.I.; Glenn Johnson, Co Investigator 
Project Dates: January 1, 2005 – December 31, 2005 (Extended into 2008). 
Budget: $220,000 
Status:  Software delivered to sponsors March, 2008. 
 
Project: PCB Congener Patterns in Adult Mohawks (Proj # 54500989, 54501133, 54501133) 
Funding Agency: Agency for Toxic Substances & Disease Registry (ATSDR).  
Primary Awardee: University at Albany, Anthony DeCaprio, P.I.   
Subaward: University of Utah, Glenn W. Johnson, P.I.,   
Project Dates: October 1, 2004 - September 30, 2007 
Budget: UU Subaward: $39,000 
Status: Completed September 2007 
 
Project: Emigrant Slimhole Drilling Project, Fish Lake, Nevada – GRED III 
Funding Agency:  Department of Energy (DOE) 
Primary Awardee: Esmeralda Energy Company, John E. Deymonaz, PI 
Subaward: University of Utah, Jeff Hulen, Greg Nash, Co-PIs, Glenn Johnson, Investigator 
Project Dates: January, 2005 – December, 2007 
Budget: $740,000 – UU Subaward: $153,078 
Status: Project Completed. 
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RECENT UNIVERSITY FUNDING (Continued) 
Project: PCB Fingerprinting in Sediments of Twelve Mile Creek, Lake Hartwell, SC (Proj # 
54900561, 54900493,  
Funding Agency: US Environmental Protection Agency (USEPA) 
Primary Awardee: Battelle Memorial Institute, Victor Magar, P.I.   
Subaward: University of Utah, Glenn W. Johnson, P.I.,   
Project Dates: August 31, 2000 – March 30, 2005 
Budget: UU Subaward: $26,212 
 
Project: Analytical and Modeling Methods for Biostratigraphy (Proj # 50501006) 
Funding Agency: Technical Alliance for Computational Stratigraphy 
Awardee: University of Utah, Anthony C. Gary, P.I.; Glenn Johnson, Co Investigator 
Project Dates: January 1, 2004 – December 31, 2004 
Budget: $110,000 
 
Project: Biostratigraphic Preprocessor (Proj # 50501108) 
Funding Agency: Technical Alliance for Computational Stratigraphy 
Awardee: University of Utah, Anthony C. Gary, P.I.; Glenn Johnson, Co Investigator  
Project Dates: December 16, 2002 – December 15, 2004 
Budget: $220,002 
 
Project: PCB Congener Patterns in Adult Mohawks (Proj # 54500989, 54501133, 54501133) 
Funding Agency: Agency for Toxic Substances & Disease Registry (ATSDR).  
Primary Awardee: University at Albany, Anthony DeCaprio, P.I.   
Subaward: University of Utah, Glenn W. Johnson, P.I.,   
Project Dates: September 30, 2001 – September 29, 2004 
Budget: Total Grant: $225,000 – UU Subaward: $35,514 
 
ENVIRONMENTAL CONSULTING EXPERIENCE 
Expert Witness Testimony 
• Superior Court of the State of Washington for King County (City of Seattle v. Michael O. 

Malarkey, et al.). Subject: Sources of polychlorinated biphenyls (PCBs) in soils and 
sediments at a former asphalt manufacturing facility along the Duwamish Waterway in 
Seattle, WA.  Deposition testimony in June 2008.  Clients: Stoel Rives, LLP and the Port of 
Seattle.  Case settled in July 2008. 

• United States District Court for the Central District of California. (Angeles Chemical 
Company, et al., v. McKesson Corporation). Subject: Sources of Chlorinated VOCs in 
Groundwater Beneath Neighboring Solvent Packaging Facilities. Rebuttal Report in 
March, 2008. Clients: Caufield & James, LLP and Angeles Chemical Company.  Case 
Ongoing.  Expert that Johnson Rebutted Disqualified in May 2008. 

• Arbitration in the matter of allocation of cleanup costs for PCBs in soil and sediments in 
Union City, Indiana.  Subject: Sources of polychlorinated biphenyls (PCBs) in sediments of 
Little Mississinnewa River and floodplain. Report in November 2004. Rebuttal Report in 
July, 2007. Deposition testimony in August, 2007.  Case settled in September, 2007.  
Client: Hanna Associates, Inc.; Eastman & Smith, Ltd and United Technologies, Inc. 
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ENVIRONMENTAL CONSULTING EXPERIENCE (Continued) 
Expert Witness Testimony (Continued) 
• United States District Court, Southern District of California (San Diego Unified Port 

District v. TDY Industries, Inc., et al.).  Subject: Sources of polychlorinated biphenyls 
(PCBs) in sediments from a storm water conveyance system leading to a lagoon in San 
Diego Bay, California.  Deposition testimony in January, 2007.  Case settled March, 2007.  
Client: Latham &  Watkins, LLP; counsel for defendant General Dynamics. 

• United States District Court for the Northern District of Mississippi- Western Division 
(Fred Beck, et al., vs. Koppers Industries et al., Civil Action No. 3:03CV-60-P-D).  
Subject: Sources of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) in soil 
and sediment.  Expert Reports in 2005.  Depositions: in 2005 and 2006.  Trial testimony: in 
April 2006. Client: Consortium of Residents of Grenada, Mississippi (represented by 
Lundy & Davis).  

• Circuit Court of Copiah County, Mississippi (Kellum et al., vs. Kuhlman Corporation et al., 
Civil Action No. 2001-0313 thru 2001-0324).  Subject: Sources of polychlorinated 
biphenyls (PCBs) in soil, sediment, tree bark and blood. Expert Reports in 2003.  
Depositions: 2003 and 2005.  Client: David Nutt & Associates and a Consortium of 
Residents of Crystal Springs, Mississippi. 

Other Litigation / Arbitration Support 
• Litigation support and expert report preparation: Former Campbell Shipyard, San Diego, 

California.  San Diego Unified Port District v. ExxonMobil, et. al.,  United States District 
Court, Southern District of California. Case No. 03 CV 1053 DMS (POR).   Conducted 
data analysis and developed opinions regarding sources of PCBs in sediment at the former 
Campbell Shipyard, San Diego Bay.  Case settled in October 2006 prior to submittal of 
expert reports, and/or deposition testimony (2006). 

• Consulting expert for confidential client in anticipation of litigation.  Data analysis and 
consultation calls on expertise in environmental forensics, sources, fate and transport of 
PCDD/F in sediments of a U.S. river/estuary with multiple potential point and non-point 
sources of PCDD/F.  (2002-Present). 

• Consulting expert in anticipation of litigation.  Data analysis and consultation calls on 
expertise in environmental forensics, sources, fate and transport of PCDD/F in sediments of 
a Pacific Northwest U.S. river near three industrial facilities.  (2004-2005). 

• Consulting expert in anticipation of litigation. Developed field sampling strategy and 
performed PCB fingerprinting using congener-specific data from storm sewer sediments 
near an industrial facility in upstate New York (2003). 

• Consulting expert in anticipation of litigation. Performed PCB fingerprinting using 
congener-specific data from sediment cores collected offshore of a major west-coast U.S. 
city. Work performed for a confidential client in anticipation of litigation (1999).   

• Developed a quantitative receptor model for PAH in sediments Thea Foss Waterway, 
Tacoma, WA. The project was part of a series of investigations in support of a cleanup-cost 
allocation / arbitration process (1999-2001).   
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ENVIRONMENTAL CONSULTING EXPERIENCE (Continued) 
Other Litigation / Arbitration Support (Continued) 
• Developed a multivariate statistical model to help determine sources of pesticides in 

residential soils near a manufacturing plant in Texas. The project was conducted for a 
confidential client in anticipation of environmental litigation (1999). 

• Utilized multivariate statistical techniques to develop a quantitative source apportionment 
model to account for sources of chromium in groundwater near two electroplating facilities 
in Greenville, South Carolina (1997). 

• Developed a mixing model for dioxin and dibenzofuran residues in sediments in a major 
industrialized waterway.  The model was used to show that the assertion of single industrial 
source of contamination to the estuary was untenable.  Specific chemical fingerprints were 
resolved, and their relative contributions to sediments were quantified (1992-1994).  

• Performed hydrogeologic technical review and wrote summary documents for the 
development of expert witness testimony for a plaintiff in two civil actions in Superior 
Court, State of New Jersey (1988-1989). 

 
Environmental Site Assessment / Hydrogeologic Investigations 
• Project Manager for investigation of an unregistered solid waste landfill in a wetlands area 

of the New Jersey Pinelands, Atlantic County, New Jersey.  Scope of work included pre-
investigation review of site-specific historical information, aerial photographs, 
environmental setting and applicable state and federal regulations that would apply to 
investigation and remediation.  Site investigation included wetlands delineation & 
contaminant characterization of landfill soils, and groundwater beneath the landfill (1992). 

• Used a non-parametric statistical technique (Mann-Whitney U Test) to analyze 
groundwater contaminant trends over a four year time period at a manufacturing facility in 
southern New Jersey.  The statistical analyses demonstrated that groundwater quality was 
improving at the site.  The results of the test were incorporated into a position paper to the 
New Jersey Department of Environmental Protection and Energy recommending that the 
facility's NJPDES permit be allowed to expire at the conclusion of the permit term (1991).  

• Used MODFLOW, the USGS modular three dimensional finite difference flow model to 
simulate groundwater flow in a water-table aquifer in Hainesport, Burlington County, NJ.  
The model was used to determine placement of extraction and reinjection wells in 
conjunction with the design of a groundwater treatment system (1991). 

• Supervised the technical development of the Sampling Analysis and Monitoring Plan and 
the Quality Assurance Project Plan prepared as part of a Remedial Design Work Plan for an 
EPA-lead Superfund site in Burlington County, New Jersey.  The scope of work included a 
soil-gas survey, an electromagnetic conductivity survey, a ground penetrating radar survey, 
an exploratory excavation/drum sampling program, and a 72-hour pumping test (1989-
1991).   
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ENVIRONMENTAL CONSULTING EXPERIENCE  
Environmental Site Assessment / Hydrogeologic Investigations (Continued) 
• Wrote the scope of work for an investigation of environmental setting for a RCRA Facility 

Workplan at a polymer manufacturing facility in Gloucester County, New Jersey.  The 
work plan included monitoring well installation and sampling, borehole geophysics, 
pumping tests, geotechnical/geochemical sampling and in-situ infiltration tests (1989-
1990). 

• Field team member for New Jersey ECRA Sampling Plan and Clean-up Plan activities at 
five ECRA sites in New Jersey.  Activities included installation of monitoring wells, test-
pit excavation, soil and ground water sampling and continuous ground water monitoring 
using electronic data loggers (1989-1990). 

• Project Hydrogeologist for environmental programs at a UST site in South Brunswick, 
New Jersey.  Responsibilities included oversight and implementation of UST excavation 
and soils disposition, monitoring well installation, soil gas surveys, ground water sampling 
and monitoring for VOCs and semivolatile compounds, data analysis, report preparation, 
clean-up plan preparation, preparation of discharge permit applications (NJPDES), and 
preparation for negotiations with NJDEPE Bureau of Underground Storage Tanks (1989-
1991). 

• Auditor for comprehensive compliance audits performed at hazardous waste treatment, 
storage and disposal facilities in Baltimore, MD and Fort Wayne, IN.  Conducted for the 
Commercial Hazardous Waste Management Evaluation Group (CHWMEG), a consortium 
of approximately 30 corporations that utilize a number of TSDF facilities across the nation 
(1989-1990). 

• Project Manager for Phase II environmental assessments at four commercial printing 
facilities in Florida, New York and Connecticut.  The project was conducted as part of a 
real estate transaction to assess potential liability associated with underground tanks and 
septic systems (1990). 

• Project Hydrogeologist responsible for oversight of soil boring and monitoring well 
installation; well-development, soil sampling, groundwater sampling, UST removal, post-
excavation sampling and report preparation.  Various clients and projects (1989-1993). 

• Liaison between major oil company and the New Jersey Department of Environmental 
Protection - Bureau of Underground Storage Tanks to expedite compliance with state and 
federal UST registration requirements (1988-1989). 

• Field geologist responsible for quarterly bail & gauge, groundwater sampling and other 
related activities at former ARCO service stations in Pennsylvania, New Jersey, Delaware 
and Maryland (1988-1989). 
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TEACHING 
University Teaching 
2005 & 2007, Taught CVEEN 6630: Ecological Systems and Engineering, Department of Civil 

and Environmental Engineering, University of Utah. (Graduate level only). 

2000-2004, Taught CVEEN 5630/6630 Ecological Systems and Engineering, Department of 
Civil and Environmental Engineering, University of Utah. (Dual listed class: Graduate 
and Undergraduate) 

2000-2008. Served on Graduate Committees at the University of Utah for M.S. and Ph.D. 
Candidates within the Department of Civil and Environmental Engineering and the 
Department of Chemical Engineering.   

Fall Semester, 1993, Hydrogeology, School of Engineering, Widener University, Chester, PA   

1985-1987, Graduate Teaching Assistantship, Department of Geology, University of Delaware. 
Taught labs for Introductory Geology, Mineralogy, and Paleontology. 

 
Short Courses 
Introduction to Environmental Forensics.  Workshops presented by Association of Environmental 

Health Sciences (AEHS)  
 March 21, 2002, San Diego, California 
 August 14, 2001, Imperial College, London, England, United Kingdom 

Introduction to Environmental Forensics.  Workshops presented by International Society of 
Environmental Forensics (ISEF).   

 September 25-26, 2006.  Baltimore, Maryland. 
 November 9-10, 2004. Charleston, South Carolina. 
 November 4-5, 2003. San Diego, California 
 April 14-15, 2003. Honolulu, Hawaii 
 September 23-24, 2002.  Santa Fe, New Mexico 

Johnson, G.W. and Haddad, R.I. (2000-2002). Use of Chemometric Methods in Environmental 
Forensics Investigations. Society of Environmental Toxicology and Chemistry Short 
Course.  SETAC 21st - 23rd Annual Meetings. Nashville, TN; Baltimore, MD; and Salt 
Lake City, UT. 

Johnson, G.W. An Environmental Forensics Case Study: PCB Source Identification in San 
Francisco Bay. International Business Communications 2nd Annual Executive Forum on 
Environmental Forensics. Marriott Metro Center. Washington, D.C. June 24-25, 1999. 

Johnson, G.W., Gary, A.C., and Yarus, J. Applied Multivariate Analysis of Geological Data.  
EGI. Short Course: EGI Instructional Services Catalogue. (http://associates.egi.utah.edu/) 
1998-Present. 

Zmuda, J. Chapman, P.H., Rodriguez, T.E., Johnson, G.W., Swetits, F.W., Wideman, J.A., 
Perkins, E.E., Mathre, O.B., Shmookler, M., Snyder, D., and Abercrombie, D. (1994). 
Environmental Sampling, Laboratory and Data Analysis, Executive Enterprises, Inc. 
November 9-10, 1994. 
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B- 14

Peer Review / Editorial 
1995-2007  Served as peer-reviewer for manuscripts submitted to the following journals:  

AAPG Bulletin, Chemosphere, Journal of Chemometrics; Chemometrics and Intelligent 
Laboratory Systems; Environmental Forensics; Environmental Pollution; Environmental 
Science & Technology; Environmental Toxicology & Chemistry; Geochemistry-
Geophysics-Geosystems (G3); Geothermics; Integrated Environmental Assessment and 
Management; Organic Geochemistry; Journal of Volcanology, Geothermal Research, 
and Water Science.  

2000  Technical Reviewer for USEPA Receptor Modeling Software (Project Manager: Charles 
Lewis, USEPA, Research Triangle, North Carolina. 

2001  Magar, V.S., Johnson, G., Ong, S.K. and Leeson, A. (Editors) (2001).  Bioremediation of 
Energetics, Phenolics and Polycyclic Aromatic Hydrocarbons. The Sixth International In 
Situ and On-Site Bioremediation Symposium. 6(3). Battelle Press. Columbus, OH. 

2001-2005 Member, Editorial Board.  Environmental Forensics. 

2005   Peer Reviewer for Department of Defense (DoD) Strategic Environmental Research and 
Development Program (SERDP) research proposals. 
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